【论文推荐|滑坡检测·空间预测·时间预测· 数据驱动的分析】机器学习在滑坡研究中的最新进展与应用(2022)(五)

【论文推荐|滑坡检测·空间预测·时间预测· 数据驱动的分析】机器学习在滑坡研究中的最新进展与应用(2022)(五)

【论文推荐|滑坡检测·空间预测·时间预测· 数据驱动的分析】机器学习在滑坡研究中的最新进展与应用(2022)(五)



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/145551342


论文地址:https://doi.org/10.1007/s11069-022-05423-7

3 滑坡检测与制图(Detection and Mapping)

3.5 深度学习(DL)方法

深度学习(DL)方法在滑坡检测研究中主要应用于计算机视觉领域。与传统机器学习(ML)方法不同,DL方法无需大量特征工程,但通常需要更多的训练数据,因为模型变量数量较多(从千到百万不等)。这一限制通常通过数据增强方法(如旋转和翻转原始影像)来克服。在我们的文献回顾中,发现了一项在计算机视觉之外应用DL的方法:Mezaal等(2017)将基于模糊图像分割的对象级方法与多层感知机(MLP)和递归神经网络(RNN)结合,应用于马来西亚金马伦高原的滑坡检测并使用点密度为8点/m²的LiDAR点云生成0.5m分辨率的DEM,获取地形特征

在计算机视觉应用中,DL方法可以分为三类,按复杂度顺序为:

  • 图像分类
  • 目标检测
  • 语义分割

在图像分类中,目标是确定图像的标签(如滑坡或非滑坡)。在目标检测中,目标是识别和定位图像中的物体,通常通过边界框帮助定位语义分割则进一步精细化,旨在精确识别图像中物体的边界,且每个像素都分配给某一类,视为每个像素的分类问题。在滑坡检测中,基于DL的语义分割主要进行图像像素级的二值语义分割。从已识别的滑坡检测研究来看,使用深度学习的滑坡检测主要以图像分类(整体图像或图像块)或语义分割的形式进行。

3.5.1 DL在图像分类中的应用

滑坡检测中的图像分类主要限于将图像分类为滑坡或非滑坡。在DL驱动的图像分类中,通常使用在大规模数据集上预训练的知名算法来分类不包含在这些数据集中的图像。例如,Catani(2021)采用了四种预训练的高效CNN算法,通过迁移学习训练一个通用的滑坡检测模型,利用无人机和地面RGB(红绿蓝)图像进行搜索引擎中的滑坡检测。四种预训练算法包括:

  • GoogLeNet(Szegedy et al., 2015)
  • GoogLeNet-Places365(Zhou et al., 2018b),是GoogLeNet的修改版本,专门用于场景分类
  • ResNet.101,一种101层的CNN,基于残差学习的改进训练曲线(He et al., 2015)
  • Inception.V3,用于实时多用途图像分类(Szegedy et al., 2016)

表3总结了基于DL的图像分类在滑坡检测中的主要特征。
在这里插入图片描述

3.5.2 基于图像块的分类

基于图像块的分类(Patch-wise Classification)是将原始遥感影像划分为多个小尺度的正方形块,并标注其是否为滑坡区域,以训练卷积神经网络(CNN)模型。训练后的CNN可用于推理,逐块标注滑坡区域,并最终拼接得到整体滑坡分布图

在早期应用中,Ding等(2016)利用该方法检测2015年深圳滑坡灾害(块大小28像素)。Ghorbanzadeh等(2019b)在尼泊尔Rasuwa地区对比了基于人工神经网络(ANN)、支持向量机(SVM)、随机森林(RF)的像素级分类方法与CNN的图像块分类方法,测试了12、16、22、32、48像素的窗口大小,发现较小窗口通常能提高分类精度。此外,他们指出CNN性能取决于网络结构(层深、输入窗口大小、训练策略),并未必优于传统机器学习方法

3.5.3 语义分割

语义分割(Semantic Segmentation)是一种像素级分类方法,在滑坡检测中应用广泛,主要基于CNN架构。

  • FCN(全卷积网络):Long等(2015)提出的FCN使用卷积神经网络将输入影像逐像素转换为分类标签,并通过转置卷积层恢复空间维度,实现端到端的像素级预测
  • U-Net:一种高效的CNN架构,能在少量训练样本条件下实现精准分割。Konishi & Soga(2019)利用U-Net对2018年北海道地震的SAR影像进行滑坡检测,256×256像素的输入影像显示其优于基于阈值的SAR分析方法。
  • 基于ResNet的U-Net:Prakash等(2020)使用高分辨率LiDAR DEM和Sentinel-2 近红外数据,结合U-Net和ResNet进行滑坡语义分割,并与基于对象(OBIA)及像素级方法对比,发现深度学习方法略优,精度约80%,但召回率较低。Qi等(2020)和Liu等(2020)也采用U-Net和ResNet架构进行滑坡检测。

在地貌变化较复杂的地区,传统方法难以区分滑坡与其他地表变化。Fang等(2020)提出基于生成对抗网络(GAN)的孪生网络(Siamese Network)滑坡检测框架(GSF)。GSF包含

  1. 条件GAN域适应模块:通过对抗学习使滑坡前后影像在光照、大气条件等方面保持一致,仅保留滑坡导致的变化。
  2. 孪生网络检测模块:基于孪生神经网络计算滑坡前后影像的相似度,精准提取滑坡区域。

总结

深度学习在滑坡检测中的应用主要包括:

  • 图像分类(整体或图像块分类)
  • 语义分割(像素级分类)

相比传统方法,深度学习能够自动学习特征,提高检测精度,特别是在高分辨率遥感数据(如LiDAR、SAR)应用中展现出较大潜力

下节请参考:【论文推荐|滑坡检测·空间预测·时间预测· 数据驱动的分析】机器学习在滑坡研究中的最新进展与应用(2022)(六)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力毕业的小土博^_^

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值