基于知识图谱知识问答系统实现思路

摘 要

计算机网络课程涵盖了计算机科学领域中至关重要的一部分知识,即实现不同设备之间的通信和数据传输。无论是个人用户还是企业机构,都离不开计算机网络的支持。
计算机网络课程知识体系相对较为复杂,知识点繁多,学好计算机网络课程成为了一件非常有难度的事情。鉴于这种情况,本文设计并实现计算机网络课程问答系统,辅助学生更方便地学习计算机网络课程。本文实现的基于知识图谱的计算机网络课程问答系统主要功能包括开放式问答功能、知识节点展示功能、信息管理功能、数据统计分析等,其中用到的技术有:Vue单页面应用开发技术、Python接口技术、Nebula图谱库、Llamaindex、GPT自然语言处理技术、分词管理、内存数据库Redis以及MySql数据库。
经测试,基于知识图谱的计算机网络课程问答系统在功能和性能方面取得了显著成就。系统的功能性能符合预期,稳定性强,系统对问题的容错率高,回答速度快。教师和学生可以通过该系统获取到高质量的学习资源和解答方案,提高了学习效率和教学质量。同时,系统还为教师提供了课程改进和教学评估的重要参考依据。
关键词:知识图谱;问答系统;Llama-Index;GPT模型;Nebula图数据库


1 绪论

随着计算机软硬件的发展,高带宽网络的普及以及人工智能技术的日益成熟,人们的生活得到了诸多便利。在计算机软硬件方面,不断提升的性能和功能使得电脑、智能手机等设备变得更加强大和多样化。高带宽网络的普及则使得人们可以更快速地获取信息、进行沟通和分享资源,加速了信息的流动和传播。而人工智能技术的发展,则为人们提供了诸多智能化的解决方案,包括智能助手、自动驾驶、智能家居等,极大地提升了生活和工作的效率。

1.1 研究背景

计算机网络课程涵盖了计算机科学领域中至关重要的一部分,即实现不同设备之间的通信和数据传输。无论是个人用户还是企业机构,都离不开计算机网络的支持。
但是,因为计算机网络课程知识体系相对较为复杂,知识点非常繁多,学好计算机网络课程也是一件非常有难度的事情。
鉴于这种情况,研发一款优秀的问答系统辅助学习计算机网络课程,迫在眉睫,同时这款问答系统也应该适用于其他课程知识的存储的和问答。

1.2 研究意义

通过对市场上现有的知识存储技术和知识问答技术进行深入调查和考察得出了一个重要的结论:研发一款基于知识图谱的问答系统来辅助学习计算机网络课程是至关重要且必要的。
首先,这样的系统能够利用知识图谱的结构化特性,清晰地呈现计算机网络领域的庞大知识体系,使学生能够更系统地学习和理解相关概念、协议、技术以及实践经验。其次,基于知识图谱的问答系统可以根据学生的个性化需求提供定制化的学习路径和问题解答,从而提高学习效率和成效。此外,该系统还能够及时跟踪并整合计算机网络领域的最新进展,保持知识的时效性,使学生能够了解最新技术趋势并将其应用于实践中。
综上所述,基于知识图谱的问答系统不仅能够为学生提供全面而个性化的学习支持,还有助于推动教育信息化的进程,提升教学质量和效率,使学习者更好
地掌握计算机网络领域的知识与技能,甚至对推动我国计算机领域教育事业创新改革有着重大的意义。

1.3 知识图谱研究现状

1.3.1 知识图谱国内外研究现状

近年来,基于知识图谱的问答系统在学术界和工业界都引起了广泛关注和研究。国内外的不少研究机构和公司纷纷投入到这一领域的研究中,推动了该技术的不断发展。
(1)知识图谱国外研究现状
研究者Liang X(2024)提出大数据领域是高度专业化和垂直化的领域,这些信息并不容易转化为可用的数据,以往对基于知识图谱的南京云锦问答系统的研究已经部分解决了这一问题,然后提出了一种融合知识图谱和检索增强生成技术的南京云锦问答系统[1]。研究者Liang X(2024)构建了基于知识图谱的南京云锦数字资源智能问答系统,利用Neo4j图数据库对南京云锦知识进行高效的组织、存储和保护,从而揭示其深厚的文化内涵[2]。研究者Xiaochi Z(2023)利用基于混合知识图谱嵌入实现,在为化学相关研究和工业应用提供面向事实的信息检索,图神经网络和知识图谱等技术,提出了一种结合半监督图神经网络和知识图谱的疾病引导模型[3]。研究者Xu W(2023)使用MASR语音识别模块结合门控卷积单元对不同类型的语音进行有效的文本处理;然后利用自然语言处理中的LTP模块对疑问句进行语义分析和切分匹配;将关键词与疾病数量相结合,用知识图谱划分并构建节点集合[4]。研究者Hanxu L(2021)建立了基于语义模板的质量问题知识检索过程模型。构建了一个域语料库,它由数以千计的质量问题处理记录组成,采用TF - IDF (词频-逆文档频率)算法对质量问题分析报告进行词汇提取[5]。研究者Li W (2022)基于知识图谱的问答是一种从结构化的知识图谱信息推断出自然语言问题答案的智能方法。作为主流的基于知识图谱的问答方法之一,基于信息检索的方法通过构建和排序候选路径来推断正确答案,在简单问题上取得了优异的性能,但由于实体信息丰富,关系多样,难以处理复杂问题[6]。研究者Yuan S(2021)构建了基于Neo4j的旅游知识图,构建了问答系统( QA ),采用上述方法,自然语言问题成功转化为图数据库中可识别的Cypher查询语句,相应的答案将从旅游知识图中捕获并返回[7]。研究者Junlian L (2022)利用知识图谱在配电网设备信息( DNEI )管理中的应用,可以有效地将设备数据进行融合,形成以知识为导向的新型检修管理模式,在语义检索能力和处理复杂大数据关系方面具有很大的优势[8]。研究者Junwei L (2022)首先基于中文Open KG . cn结构化医疗常识数据构建Neo4J知识图谱,然后基于构建的知识图谱构建问答系统,步骤包括从数据收集、数据表示、实现通用的图构建工具等方面构建完整可用的图,然后利用流水线式问答系统模型构建医疗常识问答系统,最后展望问答系统在不同医疗领域的应用前景和行业发展趋势[9]。研究者Yiming S (2024)基于知识图谱的问答系统旨在发现问题背后的内部知识与已知知识库三元组之间的联系,提出了一种知识图谱问答框架( ZDNN-KGQA ),将基于知识图谱的智能问答分为命名实体识别、实体消歧、属性分类和答案选择4个步骤[10]。
(2)知识图谱国内研究现状
蔡令仪(2024)提出并开发基于认知技能图谱的电力电子开关电源实验智能问答系统,旨在为学生提供个性化指导,首先,引入贝叶斯心理测量模型评估学生能力达成情况;然后,利用知识图谱技术构建陈述性知识图谱和用户数字镜像,分别用于存储电源特定领域知识和用户能力信息[11]。季晓慧(2024)利用已有相关矿物数据库用于存储和查询相关矿物知识,常用的搜索引擎也可以对矿物知识进行查询,但无法回答用自然语言进行提问的矿物问题,查询返回的答案需要进一步筛选,基于知识图谱进行矿物知识问答的相关研究,只能回答涉及知识图谱中一个三元组的简单问题,无法回答涉及多个三元组的多跳复杂问题[12]。李成林(2024)基于知识图谱技术,构建一个农作物良种问答系统,以帮助农户快速、准确地获取农作物品种相关信息,提高农业生产效率,增加农民收益借助自然语言处理和BiLSTM-CRF技术设计并开发了一个问答系统,经测试,构建的农作物良种问答系统准确率可达87.67%,能满足用户对农作物品种信息的查询、获取和推荐需求[13]。王乾龙(2023)研究当前数控机床故障方面的查询机制尚不完善,机床工人在查找故障原因所在时往往需要花费较多的时间,为改善现状,从内蒙古某机械厂的数控机床故障数据中抽取其三元组,构建数控机床故障知识图谱[14]。赵同明(2024)为满足人们对健康饮食知识的了解,文章采用网络爬虫工具在权威饮食网站上获取数据,对数据进行预处理后批量导入Neo4j数据库中,构建饮食知识图谱,在此基础上设计并实现问答系统[15]。曾德晶(2024)建立了长江流域取水许可知识图谱,基于大规模预训练语言模型提出了包含实体提及识别、实体链接、关系匹配等功能的知识图谱问答流水线方法,结合取水许可领域数据特点采用BM25算法进行候选实体排序,构建了长江流域取水许可知识图谱问答系统,并基于BS架构开发了web客户端[16]。黄涌(2024)提出一种基于BERT-BiGRU的模型,通过预训练语言模型BERT和双向门控循环单元BiGRU建立医疗问答系统,其中BERT提取文本语义特征,BiGRU学习文本的顺序依赖信息,进而全面表示文本语义结构信息[17]。王博(2023)针对传统搜索引擎无法仅凭关键字准确理解用户意图的问题,构建了基于知识图谱的问答系统,问答系统主要面向西藏旅游领域,通过爬虫技术获取西藏旅游景点数据,完成知识图谱的构建[18]。

1.3.2 知识图谱在教育领域的应用现状

根据互联网统计数据显示,知识图谱在教育领域的应用仍然相对较少,尽管潜力巨大,但实际落地的案例仍然有限。
周东岱(2024)知识图谱在教育领域,知识图谱可以被应用于课程推荐系统、个性化学习路径规划、教学资源整合以及智能辅导等方面。通过构建包含教材内容、学科关联、学习路径等信息的知识图谱,可以帮助学生更好地理解学科之间的联系,个性化地制定学习计划,并得到针对性的学习建议[19]。
此外,知识图谱还可以为教师提供更精准的教学资源和指导,帮助他们更好地了解学生的知识水平和需求,从而提供更有效的教学。尽管如此,由于教育领域与其他行业相比在技术应用和变革方面相对保守,知识图谱在教育领域的应用仍然相对较少。
同时,田箫(2023)在教育领域知识图谱也面临着数据整合、隐私安全等方面的挑战,这些都影响了知识图谱在教育领域的广泛应用和发展,因此,尽管知识图谱在教育领域有很大的潜力,但目前的应用仍相对有限[20]。计算机网络在鄂尔多斯应用技术学院计算机科学与技术中是一门专业核心课程设置4学分,64学时。然而复杂,很多学生学习时比较困难,造成基础不好的现象。本论文将该问题解决,使学生有更高的学习效率。

1.4 研究内容

本文研究旨在开发一个基于知识图谱的计算机网络课程问答系,以探索这种技术在教育领域辅助学习的可行性。简单来说,该系统将采用核心技术。
(1)图谱库Nebula和Llamaindex 用于构建计算机网络知识的知识图谱,为问答系统提供支撑。
(2)GPT自然语言处理用于理解用户提出的问题,将其转化为可在知识图谱中查找的形式。
(3)分词管理对用户问题进行分词和语义分析,进一步增强系统的理解能力。
通过整合这些技术,最终将开发出一个智能化的计算机网络课程问答系统,能够为学生提供快速、准确的知识解答,从而提高学习效率和体验。同时,研究还将探讨如何将该系统推广应用于教育领域,以期为学习计算机网络知识的学生带来便利。

2 关键技术介绍

经过多次调研得出,在实现基于知识图谱的计算机网络课程问答系统方面,采用了Vue单页面应用开发技术、Python接口技术、Nebula图谱库、Llamaindex、GPT自然语言处理技术、分词管理、内存数据库Redis以及MySQL数据库技术。这些技术在各自领域具有独特优势,通过综合运用,能够构建出高效、智能且功能丰富的问答系统。下面会对每种技术进行分析和概要说明。

2.1 Vue单页面应用开发技术

Vue单页面应用开发技术是一种流行的前端开发框架,特别适用于构建交互性强、用户体验良好的Web应用程序。其核心理念是通过组件化的方式构建

### 基于知识图谱问答系统概述 基于知识图谱问答系统是一种利用结构化数据来理解和回应自然语言查询的技术。这类系统通过解析用户的输入,将其映射到预定义的知识库中,并返回最合适的答案。 #### 构建方法 构建基于知识图谱问答系统涉及多个阶段的工作流程: - **知识获取与表示**:收集领域特定的信息并转换成机器可读的形式,即创建实体及其关系的数据模型[^1]。 - **知识存储**:选择合适的方式保存这些信息,如RDF三元组、图形数据库或其他形式,以便高效地管理和访问知识点之间的关联。 - **问句理解模块开发**:此部分负责接收用户提出的自然语言问题,并运用自然语言处理技术对其进行分析,提取意图和关键词,进而转化为可以在知识图谱上执行的查询语句[^2]。 - **推理引擎集成**:为了应对复杂场景下可能出现的新情况或未知事实,需引入逻辑推理机制,在已有知识基础上推导出合理的结论。 ```python from rdflib import Graph, URIRef, Literal from SPARQLWrapper import SPARQLWrapper, JSON def query_knowledge_graph(question): g = Graph() # 加载本地或远程KG资源... sparql_endpoint = "http://example.org/sparql" sparql = SPARQLWrapper(sparql_endpoint) parsed_query = parse_question_to_sparql(question) # 自然语言转SPARQL sparql.setQuery(parsed_query) sparql.setReturnFormat(JSON) results = sparql.query().convert() return process_results(results) ``` #### 工作原理 当接收到一个问题时,该类系统会经历如下过程: - 解析后的结果用于指导搜索引擎查找匹配项; - 如果找到确切对应,则直接给出答案;如果未发现完全一致的内容,则尝试应用规则集来进行近似匹配或演绎新知; - 最终形成易于人类阅读的回答文本输出给请求者。 #### 案例研究 以计算机网络课程为例,实现了这样一个教育辅助工具。它不仅能够准确解答有关理论概念方面的问题,还能就实际操作层面给予指导建议。即使面对某些不在原始资料覆盖范围内的询问,也能凭借内置算法做出具有一定合理性的推测性回复。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值