评价模型 灰色关联分析

零、写在前面

本模型常用于较少的数据,其原理是根据图形的相似程度进行判断的,本模型不建议在美赛使用,灰色系统是国内的专家发明的,国外甚至不知道有灰色系统。

当样本个数较多时,使用标准化回归。

当样本数量较少时,使用灰色关联度。

一、模型

评价类。

根据序列曲线几何形状的相似程度来判断其联系是否紧密。曲线越接近,相应序列之间的关联度就越大,反之就越小。

其可用于系统分析和综合评价。

1.1系统分析

一般的抽象系统,如社会系统、经济系统、农业系统、生态系统、教育系统等都包含有许多种因素,多种因素共同作用的结果决定了该系统的发展态势。人们常常希望知道在众多的因素中,哪些是主要因素,哪些是次要因素;哪些因素对系统发展影响大,哪些因素对系统发展影响小;哪些因素对系统发展起推动作用需强化发展,哪些因素对系统发展起阻碍作用需加以抑制;......这些都是系统分析中人们普遍关心的问题。

eg:

粮食生产系统,人们希望提高粮食总产量,而影响粮食总产量的因素是多方面的,如播种面积以及水利、化肥、 土壤、种子、劳动、气候、耕作和政策环境。为了实现少投入多产出,并取得良好的经济效益、社会效益和生态效益,必须进行系统分析。

数理统计中回归分析、方差分析、主成分分析等都是用来进行系统分析的方法。但有如下不足之处:要求大量样本、要求样本服从某个典型的概率分布、计算量大、量化结果可能与定性结果不符。

1.2综合评价

综合评价:层次分析法,Topsis法,灰色关联分析。

层次分析法:用于没有客观数据的评价。

Topsis法:用于有客观数据的评价,可基于熵权法(推荐)也可基于层次分析法来求权重。

灰色关联分析:用于有客观数据的评价。

 二、流程(系统分析)

2.1画出统计图

老生常谈的是,任何图表都要加以文字说明,要让读者明白我们的意图。

可以从趋势、增幅、差距等方面加以阐述。

2.2确定分析序列

母序列(参考序列)X_0

能反映系统行为特征的数据序列。

子序列(比较序列)X_ii=1,2,...,m。 (m个子序列)

影响系统行为的因素组成的数据序列。

2.3数据预处理

先求出每个指标的均值,再用该指标中的每个元素都除以其均值。

在Excel表格中可以利用AVERAGE函数并用$符号(快捷键:选定后使用F4)固定单元格进行计算。

2.4计算关联系数

对于

母序列

X_0=(X_0(1),X_0(2),X_0(3),...,X_0(n))^T

子序列

X_1=(X_1(1),X_1(2),X_1(3),...,X_1(n))^T

X_2=(X_2(1),X_2(2),X_2(3),...,X_2(n))^T

......

X_m=(X_m(1),X_m(2),X_m(3),...,X_m(n))^T

记:

两极最小差a=\underset{i}{min}\underset{k}{min}\left | X_0(k)-X_i(k) \right |,两极最大差b=\underset{i}{max}\underset{k}{max}\left | X_0(k)-X_i(k) \right |

如何记忆两极最小(大)差:两极指母序列和每一个子序列,最小(大)差即两者之间最小(大)的差值。

如何计算ab?直接从式子出发当i=1k=1,2,3,...,n时,逐个计算两极差值,循环直到i=mk=1,2,3,...,n时,逐个计算两极差值。最后在所有两极差值中,挑一个最小的一个最大的分别为ab

定义\gamma (X_0(k),X_i(k))=\frac{a+\rho b}{\left | X_0(k)-X_i(k)) \right |+\rho b}为关联系数,其中\rho为分辨系数,一般取0.5。

2.5计算灰色关联度

定义\gamma (X_0,X_i) = \frac{1}{n} \sum_{k=1}^n \gamma(X_0(k),X_i(k))X_0X_i的灰色关联度。

可用Excel表格计算,也可使用MATLAB计算。

2.6比较灰色关联度

灰色关联度越大,代表其对母序列的影响越大

三、流程(综合评价)

3.1数据预处理

先正向化,后除以均值(建议把指标正向化和数据预处理分离,因为大家都这么干,但是我觉得指标正向化应该也算是数据预处理的一部分)

3.2构造母序列

将预处理后的矩阵每一行取出最大值构成母序列。

为什么要取最大值?因为在数据预处理部分已将全部数值转变为极大型指标(正向化),所以遵从越大越好的原则,我们就把矩阵每一行的最大值取出来作母序列(列向量形式)

3.3计算灰色关联度

计算各子序列与母序列的灰色关联度r_1,r_2,...,r_m

3.4计算权重

计算各子序列(指标)的权重w_i=\frac{r_i}{r_1+r_2+...+r_m}=\frac{r_i}{\sum_{k=1}^mr_k}

3.5计算得分

j个对象的最终得分S_j=\sum_{k=1}^mw_kz_{jk}z_{jk}j行第k列的得分,为什么是得分而不是实际得分,因为z_{jk}已经是经过预处理的数值了。为什么要预处理,其一前面的一系列操作都是约定俗成的计算关联度的习惯,不可避免地就进行了处理;其二是处理过后的数据好用,方便。

最终得分等于逐个算出某指标权重乘上某指标得分后求和。

3.6得分归一化

还是为了方便比较,得分最后也要进行归一化

S_i'=\frac{S_i}{\sum_{k=1}^n S_k}

四、代码(系统分析)

未使用,可能会有问题。

关于文件路径可以找到后复制粘贴即可,前提是非压缩文件。

Mean = mean(A);  % 求出每一列的均值以供后续的数据预处理
A = A ./ repmat(Mean,size(A,1),1);  
disp('预处理后的矩阵为:'); disp(A)
Y = A(:,1);  % 母序列
X = A(:,2:end); % 子序列
absX0_Xi = abs(X - repmat(Y,1,size(X,2)))  % 计算|X0-Xi|矩阵(在这里我们把X0定义为了Y)
a = min(min(absX0_Xi))    % 计算两级最小差a
b = max(max(absX0_Xi))  % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b)  % 计算子序列中各个指标与母序列的关联系数
disp('子序列中各个指标的灰色关联度分别为:')
disp(mean(gamma))

 五、代码(综合评价)

clear;clc

%判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);   %1

if Judge == 1
    Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
    disp('请输入需要处理的这些列的指  标类型(1:极小型, 2:中间型, 3:区间型) ')
    Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]:  '); %[2,1,3]
    % 注意,Position和Type是两个同维度的行向量
    for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
    % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
    % 第一个参数是要正向化处理的那一列向量 X(:,Position(i))   回顾上一讲的知识,X(:,n)表示取第n列的全部元素
    % 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
    % 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
    % 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
    end
    disp('正向化后的矩阵 X =  ')
    disp(X)
end

%% 对正向化后的矩阵进行预处理
Mean = mean(X);  % 求出每一列的均值以供后续的数据预处理
Z = X ./ repmat(Mean,size(X,1),1);  
disp('预处理后的矩阵为:'); disp(Z)

%% 构造母序列和子序列
Y = max(Z,[],2);  % 母序列为虚拟的,用每一行的最大值构成的列向量表示母序列
X = Z; % 子序列就是预处理后的数据矩阵

%% 计算得分
absX0_Xi = abs(X - repmat(Y,1,size(X,2)))  % 计算|X0-Xi|矩阵
a = min(min(absX0_Xi))    % 计算两级最小差a
b = max(max(absX0_Xi))  % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b)  % 计算子序列中各个指标与母序列的关联系数
weight = mean(gamma) / sum(mean(gamma));  % 利用子序列中各个指标的灰色关联度计算权重
score = sum(X .* repmat(weight,size(X,1),1),2);   % 未归一化的得分
stand_S = score / sum(score);   % 归一化后的得分
[sorted_S,index] = sort(stand_S ,'descend') % 进行排序
function [posit_x] = Positivization(x,type,i)
% 输入变量有三个:
% x:需要正向化处理的指标对应的原始列向量
% type: 指标的类型(1:极小型, 2:中间型, 3:区间型)
% i: 正在处理的是原始矩阵中的哪一列
% 输出变量posit_x表示:正向化后的列向量
    if type == 1  %极小型
        disp(['第' num2str(i) '列是极小型,正在正向化'] )
        posit_x = Min2Max(x);  %调用Min2Max函数来正向化
        disp(['第' num2str(i) '列极小型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 2  %中间型
        disp(['第' num2str(i) '列是中间型'] )
        best = input('请输入最佳的那一个值: ');
        posit_x = Mid2Max(x,best);
        disp(['第' num2str(i) '列中间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 3  %区间型
        disp(['第' num2str(i) '列是区间型'] )
        a = input('请输入区间的下界: ');
        b = input('请输入区间的上界: '); 
        posit_x = Inter2Max(x,a,b);
        disp(['第' num2str(i) '列区间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    else
        disp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的其他值')
    end
end
function [posit_x] = Min2Max(x)
    posit_x = max(x) - x;
     %posit_x = 1 ./ x;    %如果x全部都大于0,也可以这样正向化
end
function [posit_x] = Mid2Max(x,best)
    M = max(abs(x-best));
    posit_x = 1 - abs(x-best) / M;
end
function [posit_x] = Inter2Max(x,a,b)
    r_x = size(x,1);  % row of x 
    M = max([a-min(x),max(x)-b]);
    posit_x = zeros(r_x,1);   %zeros函数用法: zeros(3)  zeros(3,1)  ones(3)
    % 初始化posit_x全为0  初始化的目的是节省处理时间
    for i = 1: r_x
        if x(i) < a
           posit_x(i) = 1-(a-x(i))/M;
        elseif x(i) > b
           posit_x(i) = 1-(x(i)-b)/M;
        else
           posit_x(i) = 1;
        end
    end
end

要将m(代码)和mat(数据)拖动到此处使用!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值