零、写在前面
本模型常用于较少的数据,其原理是根据图形的相似程度进行判断的,本模型不建议在美赛使用,灰色系统是国内的专家发明的,国外甚至不知道有灰色系统。
当样本个数较多时,使用标准化回归。
当样本数量较少时,使用灰色关联度。
一、模型
评价类。
根据序列曲线几何形状的相似程度来判断其联系是否紧密。曲线越接近,相应序列之间的关联度就越大,反之就越小。
其可用于系统分析和综合评价。
1.1系统分析
一般的抽象系统,如社会系统、经济系统、农业系统、生态系统、教育系统等都包含有许多种因素,多种因素共同作用的结果决定了该系统的发展态势。人们常常希望知道在众多的因素中,哪些是主要因素,哪些是次要因素;哪些因素对系统发展影响大,哪些因素对系统发展影响小;哪些因素对系统发展起推动作用需强化发展,哪些因素对系统发展起阻碍作用需加以抑制;......这些都是系统分析中人们普遍关心的问题。
eg:
粮食生产系统,人们希望提高粮食总产量,而影响粮食总产量的因素是多方面的,如播种面积以及水利、化肥、 土壤、种子、劳动、气候、耕作和政策环境。为了实现少投入多产出,并取得良好的经济效益、社会效益和生态效益,必须进行系统分析。
数理统计中回归分析、方差分析、主成分分析等都是用来进行系统分析的方法。但有如下不足之处:要求大量样本、要求样本服从某个典型的概率分布、计算量大、量化结果可能与定性结果不符。
1.2综合评价
综合评价:层次分析法,Topsis法,灰色关联分析。
层次分析法:用于没有客观数据的评价。
Topsis法:用于有客观数据的评价,可基于熵权法(推荐)也可基于层次分析法来求权重。
灰色关联分析:用于有客观数据的评价。
二、流程(系统分析)
2.1画出统计图
老生常谈的是,任何图表都要加以文字说明,要让读者明白我们的意图。
可以从趋势、增幅、差距等方面加以阐述。
2.2确定分析序列
母序列(参考序列)。
能反映系统行为特征的数据序列。
子序列(比较序列),
。 (m个子序列)
影响系统行为的因素组成的数据序列。
2.3数据预处理
先求出每个指标的均值,再用该指标中的每个元素都除以其均值。
在Excel表格中可以利用AVERAGE函数并用$符号(快捷键:选定后使用F4)固定单元格进行计算。
2.4计算关联系数
对于
母序列
子序列
记:
两极最小差,两极最大差
如何记忆两极最小(大)差:两极指母序列和每一个子序列,最小(大)差即两者之间最小(大)的差值。
如何计算和
?直接从式子出发当
,
时,逐个计算两极差值,循环直到
,
时,逐个计算两极差值。最后在所有两极差值中,挑一个最小的一个最大的分别为
和
。
定义为关联系数,其中
为分辨系数,一般取0.5。
2.5计算灰色关联度
定义为
与
的灰色关联度。
可用Excel表格计算,也可使用MATLAB计算。
2.6比较灰色关联度
灰色关联度越大,代表其对母序列的影响越大
三、流程(综合评价)
3.1数据预处理
先正向化,后除以均值(建议把指标正向化和数据预处理分离,因为大家都这么干,但是我觉得指标正向化应该也算是数据预处理的一部分)
3.2构造母序列
将预处理后的矩阵每一行取出最大值构成母序列。
为什么要取最大值?因为在数据预处理部分已将全部数值转变为极大型指标(正向化),所以遵从越大越好的原则,我们就把矩阵每一行的最大值取出来作母序列(列向量形式)
3.3计算灰色关联度
计算各子序列与母序列的灰色关联度
3.4计算权重
计算各子序列(指标)的权重
3.5计算得分
第个对象的最终得分
,
第
行第
列的得分,为什么是得分而不是实际得分,因为
已经是经过预处理的数值了。为什么要预处理,其一前面的一系列操作都是约定俗成的计算关联度的习惯,不可避免地就进行了处理;其二是处理过后的数据好用,方便。
最终得分等于逐个算出某指标权重乘上某指标得分后求和。
3.6得分归一化
还是为了方便比较,得分最后也要进行归一化
四、代码(系统分析)
未使用,可能会有问题。
关于文件路径可以找到后复制粘贴即可,前提是非压缩文件。
Mean = mean(A); % 求出每一列的均值以供后续的数据预处理
A = A ./ repmat(Mean,size(A,1),1);
disp('预处理后的矩阵为:'); disp(A)
Y = A(:,1); % 母序列
X = A(:,2:end); % 子序列
absX0_Xi = abs(X - repmat(Y,1,size(X,2))) % 计算|X0-Xi|矩阵(在这里我们把X0定义为了Y)
a = min(min(absX0_Xi)) % 计算两级最小差a
b = max(max(absX0_Xi)) % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi + rho*b) % 计算子序列中各个指标与母序列的关联系数
disp('子序列中各个指标的灰色关联度分别为:')
disp(mean(gamma))
五、代码(综合评价)
clear;clc
%判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标'])
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0: ']); %1
if Judge == 1
Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
disp('请输入需要处理的这些列的指 标类型(1:极小型, 2:中间型, 3:区间型) ')
Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]: '); %[2,1,3]
% 注意,Position和Type是两个同维度的行向量
for i = 1 : size(Position,2) %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
% Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
% 第一个参数是要正向化处理的那一列向量 X(:,Position(i)) 回顾上一讲的知识,X(:,n)表示取第n列的全部元素
% 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
% 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
% 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
end
disp('正向化后的矩阵 X = ')
disp(X)
end
%% 对正向化后的矩阵进行预处理
Mean = mean(X); % 求出每一列的均值以供后续的数据预处理
Z = X ./ repmat(Mean,size(X,1),1);
disp('预处理后的矩阵为:'); disp(Z)
%% 构造母序列和子序列
Y = max(Z,[],2); % 母序列为虚拟的,用每一行的最大值构成的列向量表示母序列
X = Z; % 子序列就是预处理后的数据矩阵
%% 计算得分
absX0_Xi = abs(X - repmat(Y,1,size(X,2))) % 计算|X0-Xi|矩阵
a = min(min(absX0_Xi)) % 计算两级最小差a
b = max(max(absX0_Xi)) % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi + rho*b) % 计算子序列中各个指标与母序列的关联系数
weight = mean(gamma) / sum(mean(gamma)); % 利用子序列中各个指标的灰色关联度计算权重
score = sum(X .* repmat(weight,size(X,1),1),2); % 未归一化的得分
stand_S = score / sum(score); % 归一化后的得分
[sorted_S,index] = sort(stand_S ,'descend') % 进行排序
function [posit_x] = Positivization(x,type,i)
% 输入变量有三个:
% x:需要正向化处理的指标对应的原始列向量
% type: 指标的类型(1:极小型, 2:中间型, 3:区间型)
% i: 正在处理的是原始矩阵中的哪一列
% 输出变量posit_x表示:正向化后的列向量
if type == 1 %极小型
disp(['第' num2str(i) '列是极小型,正在正向化'] )
posit_x = Min2Max(x); %调用Min2Max函数来正向化
disp(['第' num2str(i) '列极小型正向化处理完成'] )
disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
elseif type == 2 %中间型
disp(['第' num2str(i) '列是中间型'] )
best = input('请输入最佳的那一个值: ');
posit_x = Mid2Max(x,best);
disp(['第' num2str(i) '列中间型正向化处理完成'] )
disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
elseif type == 3 %区间型
disp(['第' num2str(i) '列是区间型'] )
a = input('请输入区间的下界: ');
b = input('请输入区间的上界: ');
posit_x = Inter2Max(x,a,b);
disp(['第' num2str(i) '列区间型正向化处理完成'] )
disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
else
disp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的其他值')
end
end
function [posit_x] = Min2Max(x)
posit_x = max(x) - x;
%posit_x = 1 ./ x; %如果x全部都大于0,也可以这样正向化
end
function [posit_x] = Mid2Max(x,best)
M = max(abs(x-best));
posit_x = 1 - abs(x-best) / M;
end
function [posit_x] = Inter2Max(x,a,b)
r_x = size(x,1); % row of x
M = max([a-min(x),max(x)-b]);
posit_x = zeros(r_x,1); %zeros函数用法: zeros(3) zeros(3,1) ones(3)
% 初始化posit_x全为0 初始化的目的是节省处理时间
for i = 1: r_x
if x(i) < a
posit_x(i) = 1-(a-x(i))/M;
elseif x(i) > b
posit_x(i) = 1-(x(i)-b)/M;
else
posit_x(i) = 1;
end
end
end
要将m(代码)和mat(数据)拖动到此处使用!