往期精彩内容:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理
基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客
基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客
Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客
Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客
Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客
Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客
Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客
轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客
Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型-CSDN博客
独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客
基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型-CSDN博客
Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客
轴承故障全家桶更新 | 基于VGG16的时频图像分类算法-CSDN博客
轴承故障全家桶更新 | CNN、LSTM、Transformer、TCN、串行、并行模型、时频图像、EMD分解等集合都在这里-CSDN博客
Python轴承故障诊断 (19)基于Transformer-BiLSTM的创新诊断模型-CSDN博客
Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客
视觉顶会论文 | 基于Swin Transformer的轴承故障诊断-CSDN博客
Python轴承故障诊断 | 多尺度特征交叉注意力融合模型-CSDN博客
SHAP 模型可视化 + 参数搜索策略在轴承故障诊断中的应用-CSDN博客
速发论文 | 基于 2D-SWinTransformer+1D-CNN-SENet并行故障诊断模型-CSDN博客
Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客
基于改进1D-VGG模型的轴承故障诊断和t-SNE可视化-CSDN博客
故障诊断 | 创新模型更新:基于SSA-CNN-Transformer诊断模型-CSDN博客
独家首发 | 基于 2D-SwinTransformer + BiGRU-GlobalAttention的并行故障诊断模型-CSDN博客
位置编码祛魅 | 详解Transformer中位置编码Positional Encoding-CSDN博客
创新点 | 基于快速傅里叶卷积(FFC) 的故障诊断模型-CSDN博客
大家都知道在咱们故障诊断领域中好的论文很多,但是代码开源的却很少,代码开源必是精品!继上一期分享的图神经网络在智能诊断与预测中的应用:
本期继续分享一篇Top期刊论文,变工况下的域对抗图卷积网络故障诊断,划重点-代码开源!!!
论文题目:《Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Conditions》
链接:
https://ieeexplore.ieee.org/document/9410617
代码:
https://github.com/HazeDT/DAGCN
核心点:
DAGCN的核心思想是在统一的深度网络中建模类别标签、域标签和数据结构,以实现端到端的域适应。该方法主要包括以下几个关键步骤:
● 特征提取:利用卷积神经网络(CNN)从输入信号中提取特征。
● 图生成层(GGL):从CNN提取的特征中学习数据结构,构建实例图。
● 图卷积网络(GCN):对实例图进行建模,利用最大均值差异(MMD)度量实现域对齐。
● 对抗域适应:通过类别分类器和域判别器实现对抗训练。
1 摘要
基于无监督域自适应(UDA)的方法在变工况机械故障诊断方面取得了很大进展。在UDA中,三种类型的信息,包括类标签、领域标签和数据结构,是连接已标记的源域和未标记的目标域所必需的。然而,现有的基于uda的方法大多只使用了前两种信息,而忽略了数据结构的建模,这使得深度网络提取的特征所包含的信息不完整。为了解决这一问题,提出了一种域对抗图卷积网络(DAGCN)来对统一深度网络中的三类信息进行建模并实现UDA。前两类信息分别由分类器和域鉴别器建模。
在数据结构建模中,首先使用卷积神经网络(CNN)从输入信号中提取特征。然后,将CNN特征输入到所提出的图生成层中,通过挖掘样本结构特征之间的关系来构建实例图。然后,利用图卷积网络对实例图进行建模,利用最大均值差异度量来估计不同域实例图的结构差异。两个实例的实验结果表明,本文提出的DAGCN算法不仅在比较方法中获得了最好的性能,而且能够提取可转移的特征进行领域自适应。
1.1 论文工作的主要贡献总结如下
1)提出对抗域自适应GCN,通过对统一深度网络中的三类信息建模,实现端到端的域自适应。
2)建立了实现变工况故障诊断的图迁移学习框架,包括相应的损失函数和参数更新公式。
3)提出了GGL从CNN特征构造实例图,将特征向量转换为相邻矩阵,利用top -k秩找到最近邻的前k个。
1.2 基于无监督域自适应(UDA)的方法
基于数据集的智能故障诊断方法可分为四类:
● 基于网络的方法
● 基于映射的方法
●基于实例的方法
● 基于对抗性的方法
在基于uda的方法中,有三种类型的信息在连接未标记的目标领域和标记的源领域方面起着至关重要的作用,即类标签、领域标签和数据结构,如图1所示。在UDA中,两个域的类标签是相同的,保证了源域样本和目标域样本可以映射到相同的特征空间中。在对抗性领域自适应[31]中,利用领域标签来训练领域分类器,这有助于特征提取器学习两个领域的全局分布。数据结构信息,如数据分布和几何数据结构,可以在保留原始空间数据属性的同时减少域差异[32],[33]。
上述三类信息在减小分布差异、实现领域自适应方面相互补充、相互促进。然而,许多现有的基于uda的方法只考虑了前两类信息,很难有效地对数据结构建模并将其集成到现有的深度网络中。
2 相关工作
2.1 无监督域自适应
最近,人们提出了几种UDA方法来学习域不变和判别特征。在这些方法中,基于mmd的方法和领域对抗神经网络(DANN)已成为两种广泛使用的方法。MMD[37]是再现核希尔伯特空间(RKHS)中的一种非参数度量,通常用于估计两个分布的期望的相似性。基于MMD的方法使用MMD度量作为深度网络的规则项,帮助网络学习可转移特征。DANN[38]的灵感来自生成式对抗网络,它通过域鉴别器和特征提取器之间的二人极小博弈来捕获可转移的特征。特征提取器的目的是提取域不变特征,这些特征被用来欺骗域鉴别器,并且训练域鉴别器来区分特征提取器捕获的哪些特征来自源域,哪些特征来自目标域。通过这种对抗性训练,特征提取器可以学习到两个域的全局分布。
2.2 谱图卷积
给定图G(a, X),其中a表示其邻接矩阵,X表示其节点特征。L = IN−D−1/2 AD−1/2为对称归一化图拉普拉斯矩阵,其中对角度矩阵D可由邻接矩阵得到,即Di,i = j Ai, j, IN为单位矩阵。
谱图卷积(GConv)使用图谱滤波器gθ = diag(θ)对输入信号x∈RN进行平滑处理[39],其数学定义为
其中θ为可学习参数,* G表示GConv算子。U为拉普拉斯矩阵的特征向量,utx为信号x在图上的傅里叶变换。
然而,上述定义的GConv不是局部化的,计算开销很大。为了解决这个问题,将卷积核gθ限制为切比雪夫多项式的展开:
标准GCN只能在固定的接受域中聚合信息。为了解决这一问题,Li等[42]提出了一种多接受域GCN (MRF-GCN)来获得强大的特征表示,并将数据结构信息嵌入到特征表示中。MRF-GCN如图所示,其GConv运算定义为:
式中,θk1、θk2、θkl为可学习参数,[·]表示特征拼接,H表示融合特征。ν表示GConv有多少个感受野。
3 DAGCN 模型结构
本文提出的用于变工况下故障诊断的DAGCN如图所示。如图所示,首先将原始数据输入到CNN中获得特征图,然后将每个特征向量视为一个节点,并将其值作为节点特征,通过提出的GGL自动生成图。
然后将得到的图输入到GCN中,将数据结构信息嵌入到节点特征中。最后,将得到的节点特征用于故障分类和领域对抗训练。因此,实现DAGCN有三个关键要素,即图的生成、目标函数和模型参数的更新。
3.1 图的生成
(1)特征提取
首先,输入信号通过卷积神经网络(CNN)提取特征。CNN由多个卷积层和池化层组成,可以有效地捕捉输入信号的局部特征和空间结构。
输入信号 → 卷积层 + 激活层 + 池化层 → 高维特征表示
(2)图生成层(GGL)
特征提取后,利用图生成层(Graph Generation Layer, GGL)将高维特征转换为图结构数据。具体步骤如下:
-
特征向量转邻接矩阵:将每个样本的特征向量表示为图中的节点,通过计算样本间的相似度(例如欧氏距离)构建邻接矩阵。
-
Top-k排序:对于每个节点,选择最相似的k个邻居节点,构建稀疏的邻接矩阵,表示样本之间的关系。
高维特征 → 计算相似度 → 邻接矩阵 → Top-k排序 → 稀疏邻接矩阵
(3)图卷积网络(GCN)
在构建的图结构上,应用图卷积网络(Graph Convolutional Network, GCN)进行特征提取和信息传播。GCN利用图结构信息,通过卷积操作将每个节点的特征与其邻居节点的特征进行融合,提取更高层次的特征。
稀疏邻接矩阵 + 高维特征 → 图卷积层 → 高层次图特征
(4)对抗域适应
DAGCN的核心在于其对抗域适应机制。通过同时训练类别分类器和域判别器,实现特征空间的对齐:
-
类别分类器:对源域数据进行分类训练,学习类别标签信息。
-
域判别器:通过对抗训练,使得源域和目标域的特征在域判别器中不可区分,实现域对齐
高层次图特征 → 类别分类器 → 类别预测
高层次图特征 → 领域判别器 → 领域判别
3.2 目标函数
DAGCN中包含三个部分,即特征提取器(F)、域鉴别器(D)和标签分类器(C)。为了学习上述三类重要信息的可转移特征和模型,总体目标函数包含三个部分,包括分类损失、域对齐损失和结构对齐损
(1)分类损失(IC):为了保证标签分类器具有良好的预测效果,通过交叉嫡损失估计真实标签和预测标签之间的分类损失;
(2)域对齐损失(IDA):由于域协变移位问题,仅用源域数据训练的标签分类器不能很好地处理目标域数据。为了解决这个问题,使用域鉴别器(D)来判断提取的特征是来自目标域还是源域,并且训练特征提取器来欺骗域鉴别器。当两人极小极大博弈达到均衡时,可以捕获域不变特征。这里采用二元交叉嫡损失作为域对齐损失;
(3)结构对齐损失(LMMD):为了对源域和目标域的特征结构进行对齐,采用MMD 度量作为结构差异对齐损失。
3.3 模型参数的更新
设θF、θC和θD分别表示特征提取器、标签分类器和域鉴别器的参数。在模型训练过程中,可以通过反向传播(BP)算法更新DAGCN中各部分的参数,表示如DAGCN图中所示。
特别是在特征提取器中,应用的MRF-GCN的参数可以通过计算以下方程式进行更新:
通过最小化定义的总体目标函数和优化DAGCN的参数,可以获得域不变和区分性特征,从而使用标记源域数据训练的分类器能够正确地对未标记目标域的数据进行分类。使用本文提出的DAGCN实现跨域故障诊断的详细流程图如下图所示。
4 实验和结论
4.1 两个案例研究
(1)齿轮箱故障诊断
在最难的任务Q30中,表现最差的模型的诊断准确率为36.16%,而提出的DAGCN的诊断准确率为80.25%。在最简单的任务,即任务Q21中,表现最差的模型的诊断准确率为81%,而DAGCN的诊断准确率为94.42%。这些结果表明,当域差异变得更大,跨域任务变得更困难时,DAGCN仍然可以获得性能改进。
(2)航空发动机锥齿轮故障诊断
所提出的DAGCN在12个跨域任务上的平均准确率为79.81%,比表现最好的方法高1.44%,比表现最差的方法高39.11%。这些结果进一步证明了DAGCN的优越性,在跨域故障诊断中具有重要的工程应用价值。
4.2 相关讨论与结论
(1)DAGCN的复杂度分析
模型详细结构和复杂性:
(2)结论
在本文中,提出了一个DAGCN来对一个统一的深度网络中的类标签、领域标签和数据结构进行建模并实现UDA。实验结果表明了所提方法的优越性。本文的结论可以概括为:
-
通过提出的GGL, CNN特征可以自动转换为实例图;
-
对构建的实例图进行GCN建模,利用MMD度量估计源域和目标域之间的结构差异;
-
实验结果表明,所提出的DAGCN能够提取出域不变特征和判别特征,实现域自适应。
点击下方卡片,后台回复”图卷积2“,可获取我们已经打包好的论文和代码!