江南大学轴承故障诊断教程+1DVGG-6种注意力机制合集!

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客

Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客

轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型-CSDN博客

独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客

基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型-CSDN博客

Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客

注意力魔改 | 超强轴承故障诊断模型!-CSDN博客

轴承故障全家桶更新 | 基于VGG16的时频图像分类算法-CSDN博客

轴承故障全家桶更新 | CNN、LSTM、Transformer、TCN、串行、并行模型、时频图像、EMD分解等集合​都在这里-CSDN博客

Python轴承故障诊断 (19)基于Transformer-BiLSTM的创新诊断模型-CSDN博客

Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客

视觉顶会论文 | 基于Swin Transformer的轴承故障诊断-CSDN博客

Python轴承故障诊断 | 多尺度特征交叉注意力融合模型-CSDN博客

SHAP 模型可视化 + 参数搜索策略在轴承故障诊断中的应用-CSDN博客

速发论文 | 基于 2D-SWinTransformer+1D-CNN-SENet并行故障诊断模型-CSDN博客

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客

1DCNN-2DResNet并行故障诊断模型-CSDN博客

基于改进1D-VGG模型的轴承故障诊断和t-SNE可视化-CSDN博客

基于K-NN + GCN的轴承故障诊断模型-CSDN博客

故障诊断 | 创新模型更新:基于SSA-CNN-Transformer诊断模型-CSDN博客

独家首发 | 基于 2D-SwinTransformer + BiGRU-GlobalAttention的并行故障诊断模型-CSDN博客

位置编码祛魅 | 详解Transformer中位置编码Positional Encoding-CSDN博客

创新点 | 基于快速傅里叶卷积(FFC) 的故障诊断模型-CSDN博客

代码开源! | 变工况下的域对抗图卷积网络故障诊断-CSDN博客

超强 !顶会创新融合!基于 2D-SWinTransformer 的并行分类网络-CSDN博客

多模态-故障诊断 | 大核卷积开启视觉新纪元!-CSDN博客

超强!一区直接写!基于SSA+Informer-SENet故障诊断模型-CSDN博客

Transformer结构优势 ,How Much Attention Do You Need?-CSDN博客

故障诊断 | 一个小创新:特征提取+KAN分类-CSDN博客

故障诊断 | 信号降噪算法合集-CSDN博客

图卷积故障诊断,新增GAT、SGCN、GIN分类模型-CSDN博客

不能错过!故障诊断+时频图像分类大更新!-CSDN博客

智能故障诊断和寿命预测期刊推荐-CSDN博客

故障诊断一区直接写,图卷积+BiGRU-Attention 并行诊断模型-CSDN博客

故障诊断高创新!基于1D-GRU+2D-MTF-ResNet-CBAM的多模态融合分类模型_基于1dcnn-informer+matt融合的故障诊断模型-CSDN博客

创新首发! | 基于1DCNN-Informer+MATT融合的故障诊断模型_论文复现基于 1dcnn bilstm 的航空发动机故障分类研究-CSDN博客

轴承故障特征—SHAP 模型 3D 可视化_shap值溯源模型-CSDN博客

时频图像/多模态+顶会论文创新,故障诊断发文不是梦!-CSDN博客

前言

本期推出江南大学轴承数据集故障诊断教程, 利用 1DVGG 网络结合 6 种顶会注意力机制,提供详细的对比教程,此代码可以直接迁移到前期我们推出的关于西储大学故障诊断模型上!(包含2024最新注意力机制,即插即用,暴力涨点!)

● 数据集:江南大学轴承数据集

● 环境框架:python 3.9  pytorch 2.1 及其以上版本均可运行

● 内容:1DVGG + 6 种注意力机制对比

● 使用对象:论文需求、毕业设计需求者

● 代码保证:代码注释详细、即拿即可跑通。

1 江南大学轴承数据集简介

1.1 数据集简介

● 采样频率:50khz,

● 采样时间:10s

● 转速:600 800 1000/rpm, 三种工况

● 故障类型:内圈—ib, 外圈—ob,  滚动体—tb,正常—n

1.2 实验处理设置

采用1000/rpm工况下的正常状态、内圈故障、外圈故障和滚动体故障数据,即一共4种故障类型。样本长度设置为1024,重叠率设置为0.5,按照7:2:1划分训练集、验证集、测试集,样本量如下所示:

2 VGG1D+注意力机制介绍

2.1 注意力机制介绍

(1)通道注意力机制—SENet

论文下载地址:

https://arxiv.org/pdf/1709.01507v2

(2)CBAM卷积块注意力模块

论文下载地址:

https://arxiv.org/abs/1807.06521

(3)ECA-Net

论文下载地址:

https://arxiv.org/pdf/1910.03151

(4)GAM注意力机制

论文下载地址:

https://arxiv.org/pdf/2112.05561

(5)频域增强通道注意力机制EFCAttention

论文下载地址:

https://arxiv.org/abs/2212.01209

(6)局部金字塔注意力模块LPA

论文下载地址:

https://ieeexplore.ieee.org/document/9895210

2.2 1DVGG + Attention 

以 1DVGG-CBAM 注意力机制为例(可视化每个模型都有!)

(1)训练可视化:

(2)模型评估:

(3)混淆矩阵:

(4)标签预测对比图:

(5)t-SNE 可视化:

原始数据:

模型训练后:

3 1DVGG结合注意力机制的对比

3.1训练曲线对比

3.2 模型评估-指标对比

在我们的江南大学数据集四分类任务上,大部分注意力机制表现出优越的效果,部分注意力机制出现过拟合或者效果下降的情况(可能数据集本身适应性的原因或者该注意力机制有其适用的场景)

SENet 通道注意力机制涨点效果表现最好

  • 自适应特征校准:SENet通过Squeeze-and-Excitation模块,对每个通道的特征进行自适应权重调整,增强重要特征,抑制无关或冗余特征。这种机制可以提升模型对故障信号关键特征的敏感度,提高故障诊断的准确性。

  • 通道间依赖建模:SENet能够捕捉不同通道特征之间的关系,通过重新校准特征通道的权重,使得模型能够更加有效地融合多通道信息,提升整体特征表达能力。

以上实验、代码可以直接用在我们往期的西储大学数据集上!

4 代码、数据整理如下:

点击下方卡片获取代码!

### 回答1江南大学(JNU)轴承故障数据集是由江南大学提供的一个用于研究轴承故障预测和诊断的数据集。该数据集包含了大量与轴承运行状态相关的参数数据,并通过采集轴承在不同工况下的振动信号来记录轴承的工作情况。 这个数据集的目的是为了帮助研究人员和工程师更好地了解轴承的故障特征以及在实际运行中的表现。通过分析和研究这些数据,我们可以识别出轴承故障的早期迹象,并采取相应的预防措施,从而避免不必要的设备停机和维修工作。 数据集中包含的参数数据有:振动信号、轴承温度、运行速度等。通过对这些参数数据的分析,我们可以获得轴承的振动频率谱图、功率谱密度图等信息,从而判断轴承是否存在故障。 对于研究轴承故障预测和诊断的研究者和工程师来说,江南大学轴承故障数据集提供了一个宝贵的资源。通过使用这个数据集,我们可以开展各种研究和实验,如开发新的故障诊断算法、优化维护策略等,以提高轴承的可靠性和持久性。 总之,江南大学轴承故障数据集是一个重要的研究平台,它为轴承故障预测和诊断的研究提供了丰富的数据资源,有助于改进轴承的性能和寿命。 ### 回答2: 江南大学轴承故障数据集是一个包含大量轴承故障数据的集合,用于研究和分析轴承故障的发生和预测。 这个数据集是由江南大学机械工程学院的专家团队搜集和整理而成的。数据集包含了多种不同类型的轴承故障数据,如振动信号、温度数据、沉积物质等。通过对这些数据的分析和比对,可以发现轴承故障的规律和特征,为轴承故障的预测和维护提供依据和参考。 这个数据集对于轴承设计和制造商、设备运营商以及轴承维护人员等来说非常有价值。首先,它提供了大量的实际轴承故障数据,可以帮助研究人员深入了解不同类型的轴承故障模式。其次,通过对数据的分析和建模,可以预测和识别轴承故障的早期迹象,从而避免设备停机和维修成本的增加。此外,对这些数据集的研究还可以为轴承的设计和制造提供改进方向和优化建议。 值得一提的是,为了更好地利用江南大学轴承故障数据集,我们需要采用先进的数据分析和挖掘技术。例如,可以利用机器学习算法和模型来建立轴承故障的预测模型,并利用这些模型进行数据挖掘和特征提取。此外,还可以通过与其他设备运行数据的整合和比对,进一步提高轴承故障预测的准确性和可靠性。 总之,江南大学轴承故障数据集是一个重要的资源,可以为轴承故障研究和预测提供有力的支持。通过对这些数据的分析和研究,我们可以更好地理解轴承故障的机理和规律,并找到有效的预防和维护方法,提高设备的可靠性和使用寿命。 ### 回答3: 江南大学轴承故障数据集是一个由江南大学提供的轴承故障数据集合。该数据集是通过对实际运行的轴承进行监测和记录而得到的,用来研究轴承的故障预测和健康状态监测。数据集包含了不同工况下轴承的振动、温度、加速度等多个传感器采集到的参数,以及轴承的健康状态标签。 这个数据集可以用于轴承故障预测算法的研究和开发。通过分析数据集中的振动和其他参数,可以识别出轴承是否处于正常工作状态,以及是否存在潜在的故障风险。研究人员可以使用这个数据集来开发智能算法,实现轴承故障的预测和监测,以提前采取维修措施,避免产生重大的故障和事故。 轴承是重要的机械构件,广泛应用于各种工业设备和机械设备中。当轴承出现故障时,会导致设备的性能下降甚至完全失效,给企业带来巨大的损失。因此,轴承健康状态的监测和故障预测非常重要,有助于提高设备的可靠性、安全性和寿命。 江南大学轴承故障数据集提供了一个基础和资源,为相关领域的研究者和工程师提供了一个可靠和实用的数据集,以推动轴承故障预测技术的发展和应用。通过深入研究和分析这个数据集,可以为企业提供更可靠和高效的轴承健康状态监测和故障预测解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值