往期精彩内容:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理
基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客
基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客
Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客
Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客
Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客
Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客
Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客
轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客
Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型-CSDN博客
独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客
基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型-CSDN博客
Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客
轴承故障全家桶更新 | 基于VGG16的时频图像分类算法-CSDN博客
轴承故障全家桶更新 | CNN、LSTM、Transformer、TCN、串行、并行模型、时频图像、EMD分解等集合都在这里-CSDN博客
Python轴承故障诊断 (19)基于Transformer-BiLSTM的创新诊断模型-CSDN博客
Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客
视觉顶会论文 | 基于Swin Transformer的轴承故障诊断-CSDN博客
Python轴承故障诊断 | 多尺度特征交叉注意力融合模型-CSDN博客
SHAP 模型可视化 + 参数搜索策略在轴承故障诊断中的应用-CSDN博客
速发论文 | 基于 2D-SWinTransformer+1D-CNN-SENet并行故障诊断模型-CSDN博客
Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客
基于改进1D-VGG模型的轴承故障诊断和t-SNE可视化-CSDN博客
故障诊断 | 创新模型更新:基于SSA-CNN-Transformer诊断模型-CSDN博客
独家首发 | 基于 2D-SwinTransformer + BiGRU-GlobalAttention的并行故障诊断模型-CSDN博客
位置编码祛魅 | 详解Transformer中位置编码Positional Encoding-CSDN博客
创新点 | 基于快速傅里叶卷积(FFC) 的故障诊断模型-CSDN博客
代码开源! | 变工况下的域对抗图卷积网络故障诊断-CSDN博客
超强 !顶会创新融合!基于 2D-SWinTransformer 的并行分类网络-CSDN博客
多模态-故障诊断 | 大核卷积开启视觉新纪元!-CSDN博客
超强!一区直接写!基于SSA+Informer-SENet故障诊断模型-CSDN博客
Transformer结构优势 ,How Much Attention Do You Need?-CSDN博客
故障诊断 | 一个小创新:特征提取+KAN分类-CSDN博客
图卷积故障诊断,新增GAT、SGCN、GIN分类模型-CSDN博客
故障诊断一区直接写,图卷积+BiGRU-Attention 并行诊断模型-CSDN博客
故障诊断高创新!基于1D-GRU+2D-MTF-ResNet-CBAM的多模态融合分类模型_基于1dcnn-informer+matt融合的故障诊断模型-CSDN博客
创新首发! | 基于1DCNN-Informer+MATT融合的故障诊断模型_论文复现基于 1dcnn bilstm 的航空发动机故障分类研究-CSDN博客
轴承故障特征—SHAP 模型 3D 可视化_shap值溯源模型-CSDN博客
时频图像/多模态+顶会论文创新,故障诊断发文不是梦!-CSDN博客
前言
本期推出江南大学轴承数据集故障诊断教程, 利用 1DVGG 网络结合 6 种顶会注意力机制,提供详细的对比教程,此代码可以直接迁移到前期我们推出的关于西储大学故障诊断模型上!(包含2024最新注意力机制,即插即用,暴力涨点!)
● 数据集:江南大学轴承数据集
● 环境框架:python 3.9 pytorch 2.1 及其以上版本均可运行
● 内容:1DVGG + 6 种注意力机制对比
● 使用对象:论文需求、毕业设计需求者
● 代码保证:代码注释详细、即拿即可跑通。
1 江南大学轴承数据集简介
1.1 数据集简介
● 采样频率:50khz,
● 采样时间:10s
● 转速:600 800 1000/rpm, 三种工况
● 故障类型:内圈—ib, 外圈—ob, 滚动体—tb,正常—n
1.2 实验处理设置
采用1000/rpm工况下的正常状态、内圈故障、外圈故障和滚动体故障数据,即一共4种故障类型。样本长度设置为1024,重叠率设置为0.5,按照7:2:1划分训练集、验证集、测试集,样本量如下所示:
2 VGG1D+注意力机制介绍
2.1 注意力机制介绍
(1)通道注意力机制—SENet
论文下载地址:
https://arxiv.org/pdf/1709.01507v2
(2)CBAM卷积块注意力模块
论文下载地址:
https://arxiv.org/abs/1807.06521
(3)ECA-Net
论文下载地址:
https://arxiv.org/pdf/1910.03151
(4)GAM注意力机制
论文下载地址:
https://arxiv.org/pdf/2112.05561
(5)频域增强通道注意力机制EFCAttention
论文下载地址:
https://arxiv.org/abs/2212.01209
(6)局部金字塔注意力模块LPA
论文下载地址:
https://ieeexplore.ieee.org/document/9895210
2.2 1DVGG + Attention
以 1DVGG-CBAM 注意力机制为例(可视化每个模型都有!)
(1)训练可视化:
(2)模型评估:
(3)混淆矩阵:
(4)标签预测对比图:
(5)t-SNE 可视化:
原始数据:
模型训练后:
3 1DVGG结合注意力机制的对比
3.1训练曲线对比
3.2 模型评估-指标对比
在我们的江南大学数据集四分类任务上,大部分注意力机制表现出优越的效果,部分注意力机制出现过拟合或者效果下降的情况(可能数据集本身适应性的原因或者该注意力机制有其适用的场景)
SENet 通道注意力机制涨点效果表现最好
-
自适应特征校准:SENet通过Squeeze-and-Excitation模块,对每个通道的特征进行自适应权重调整,增强重要特征,抑制无关或冗余特征。这种机制可以提升模型对故障信号关键特征的敏感度,提高故障诊断的准确性。
-
通道间依赖建模:SENet能够捕捉不同通道特征之间的关系,通过重新校准特征通道的权重,使得模型能够更加有效地融合多通道信息,提升整体特征表达能力。
以上实验、代码可以直接用在我们往期的西储大学数据集上!
4 代码、数据整理如下:
点击下方卡片获取代码!