单蛋白可视化的七个常见工具

数据可视化是生物信息重要研究课题之一,诸如在组学研究中,差异结果火山图,富集分析的气泡图等都能将结果一目了然展现出来。

在蛋白质组研究中,往往更关注整体蛋白的差异和功能,以及差异蛋白之间的功能关系等。但翻译后修饰等信息位于单个蛋白的不同位置,且因突变或者序列上下游等其他因素会影响修饰的功能,因此单个蛋白的可视化也有着重要的作用。

本文介绍几种常见的单蛋白可视化的方法:

  • Uniprot feature viewer

作为国际上最重要的蛋白质数据库之一,Uniprot提供了很好的单蛋白数据可视化的方案。在Uniprot主页(https://www.uniprot.org/)中输入某个蛋白ID或名称(如范例中的P05067),点击“Feature viewer”即可查看这个蛋白的各种信息。

这些信息除了基本的蛋白结构注释(如结构域,变异,翻译后修饰,二级三级结构等)外,还包括了实验相关的信息(如抗体结合序列,蛋白质组的鉴定肽段等)。蛋白的三维结构也同时可以在下方展示。

  • Protein Visualizer

Protein Visualizer (https://sfu-sun-lab.github.io/protein-visualizer-2.0/) 主要是针对N糖基化、二硫键以及这两种修饰的潜在位点进行可视化,用户可以利用该工具轻松评估预测的蛋白质拓扑结构和已知的翻译后修饰之间的潜在冲突。此外,这工具还有助于揭示显示的结构特征之间的隐藏关系。

  • PTMcosmos

PTMcosmos(https://ptmcosmos.wustl.edu/)是由华盛顿大学医学院开发的,是翻译后修饰和癌症突变的数据库。展示的内容包括文献发表、实验验证和手工注释的翻译后修饰,以及CPTAC中癌症及其配对正常组织的多组学数据。结合PTM和突变信息,用户可以通过PTMcosmos获取哪些翻译后修饰位点在癌症中突变或位于突变的周边而失活,进而影响修饰的功能。

  • Protter

Protter的文章2014年发表在Bioinformatics上,是一个基于网络的工具。通过在蛋白质拓扑结构的背景下可视化带注释的序列特征和实验蛋白质组数据。该工具的一大特点是通过表面组(surfaceome 数据集的可视化显示了膜蛋白的跨膜结构和注释数据以及实验数据的关系,对于综合可视化分析和靶向蛋白质组学肽选择方面有重要作用。

  • MusiteDeep

MusiteDeep(https://www.musite.net/)是用深度学习预测蛋白质翻译后修饰,并对结果进行展示,同时还提供了Uniprot/Swiss-Prot的修饰信息。如下图所示:

此外,用户还可以直接点击“View predicted PTM sites in 3D structure”将修饰的信息在三维结构中展示出来,如下图所示:

  • Deep-PLA

Deep-PLA是基于深度学习进行组蛋白乙酰转移酶(HAT)/组蛋白脱乙酰酶(HDAC)特异性乙酰化预测的工具。乙酰化相关突变的跨癌分析显示,乙酰化调节被癌症突变强烈破坏,并与癌症信号的调节密切相关。这些预测和分析结果可能为揭示蛋白质乙酰化在各种生物过程中的调控机制提供有用的信息,以促进癌症预后和治疗的研究。

Deep-PLA的网站(http://deeppla.cancerbio.info/)提供了可视化功能,除了相互作用外,还对单个蛋白进行了可视化,在修饰位点的基础上整合了蛋白质的无序性、表面可及性和二级结构。

  • AlphaMap

AlphaMap是蛋白质组领域的大牛Matthias Mann实验室开发的基于python的单蛋白可视化工具。旨在将蛋白质组学数据集中鉴定的肽和翻译后修饰映射到其相应的蛋白质序列中,并与UniProt的先验知识和蛋白水解切割位点一起可视化。

综上所述,这七种单蛋白可视化,从不同的角度进行单个蛋白信息的可视化分析,对于深入研究修饰等信息的功能有重要作用。

参考文献:

  1. Protein Visualizer 2.0: Intuitive and Interactive Visualization of Protein Topology and Co/Post-Translational Modifications. ACS Chem Biol. 2024 Sep 20;19(9):1930-1934. doi: 10.1021/acschembio.4c00485. Epub 2024 Sep 9.
  2. PTMViz: a tool for analyzing and visualizing histone post translational modification data. BMC Bioinformatics volume 22, Article number: 275 (2021)
  3. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014 Mar 15;30(6):884-6. doi: 10.1093/bioinformatics/btt607. Epub 2013 Oct 24.
  4. MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Res. 2020 Jul 2;48(W1):W140-W146. doi: 10.1093/nar/gkaa275.
  5. Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation. Brief Bioinform. 2020 Sep 25;21(5):1798-1805. doi: 10.1093/bib/bbz107.
  6. AlphaMap: an open-source Python package for the visual annotation of proteomics data with sequence-specific knowledge. Bioinformatics. 2022 Jan 12;38(3):849-852. doi: 10.1093/bioinformatics/btab674.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值