Qwen2 阿里最强开源大模型(Qwen2-7B)本地部署、API调用和WebUI对话机器人

阿里巴巴通义千问团队发布了Qwen2系列开源模型,该系列模型包括5个尺寸的预训练和指令微调模型:Qwen2-0.5BQwen2-1.5BQwen2-7BQwen2-57B-A14B以及Qwen2-72B。对比当前最优的开源模型,Qwen2-72B在包括自然语言理解、知识、代码、数学及多语言等多项能力上均显著超越当前领先的Llama3-70B等大模型。

Qwen2-72B模型评测

老牛同学今天部署和体验Qwen2-7B-Instruct指令微调的中等尺寸模型,相比近期推出同等规模的开源最好的Llama3-8BGLM4-9B等模型,Qwen2-7B-Instruct依然能在多个评测上取得显著的优势,尤其是代码及中文理解上。

Qwen2-7B模型

特别注意: 虽然Qwen2开源了,但仍然需要遵循其模型许可,除Qwen2-72B依旧使用此前的Qianwen License外,其余系列版本模型,包括Qwen2-0.5BQwen2-1.5BQwen2-7B以及Qwen2-57B-A14B等在内,均采用Apache 2.0许可协议。

下载Qwen2-7B-instruct模型文件

为了简化模型的部署过程,我们直接下载GGUF文件。关于GGUF文件介绍,请详见部署Llama3-8B大模型的文章:玩转AI,笔记本电脑安装属于自己的Llama 3 8B大模型和对话客户端

打开Qwen2-7B-Instruct-GGUF模型文件列表(https://modelscope.cn/models/qwen/Qwen2-7B-Instruct-GGUF/files),我们选择qwen2-7b-instruct-q5_k_m.gguf并下载:

Qwen2-7B量化模型文件

我们可以根据自己需要,选择下载其它版本的模型文件!

启动Qwen2-7B-Instruct大模型

GGUF模型量化文件下载完成后,我们就可以来运行Qwen2-7B大模型了。

在启动Qwen2-7B大模型之前,我们首先需要安装Python依赖包列表:

pip install llama-cpp-python
pip install openai
pip install uvicorn
pip install starlette
pip install fastapi
pip install sse_starlette
pip install starlette_context
pip install pydantic_settings

然后打开一个Terminal终端窗口,切换到GGUF模型文件目录,启动Qwen2-7B大模型(./qwen2-7b-instruct-q5_k_m.gguf即为上一步下载的模型文件路径):

# 启动Qwen2大模型

# n_ctx=20480代表单次回话最大20480个Token数量
python -m llama_cpp.server \
   --host 0.0.0.0 \
   --model ./qwen2-7b-instruct-q5_k_m.gguf \
   --n_ctx 20480

Qwen2-7B启动成功

Qwen2-7B-instruct 命令行对话客户端

CLI命令行的客户端,可以参考之前LLa

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值