Qwen2 阿里最强开源大模型(Qwen2-7B)本地部署、API调用和WebUI对话机器人

阿里巴巴通义千问团队发布了Qwen2系列开源模型,该系列模型包括5个尺寸的预训练和指令微调模型:Qwen2-0.5BQwen2-1.5BQwen2-7BQwen2-57B-A14B以及Qwen2-72B。对比当前最优的开源模型,Qwen2-72B在包括自然语言理解、知识、代码、数学及多语言等多项能力上均显著超越当前领先的Llama3-70B等大模型。

Qwen2-72B模型评测

老牛同学今天部署和体验Qwen2-7B-Instruct指令微调的中等尺寸模型,相比近期推出同等规模的开源最好的Llama3-8BGLM4-9B等模型,Qwen2-7B-Instruct依然能在多个评测上取得显著的优势,尤其是代码及中文理解上。

Qwen2-7B模型

特别注意: 虽然Qwen2开源了,但仍然需要遵循其模型许可,除Qwen2-72B依旧使用此前的Qianwen License外,其余系列版本模型,包括Qwen2-0.5BQwen2-1.5BQwen2-7B以及Qwen2-57B-A14B等在内,均采用Apache 2.0许可协议。

下载Qwen2-7B-instruct模型文件

为了简化模型的部署过程,我们直接下载GGUF文件。关于GGUF文件介绍,请详见部署Llama3-8B大模型的文章:玩转AI,笔记本电脑安装属于自己的Llama 3 8B大模型和对话客户端

打开Qwen2-7B-Instruct-GGUF模型文件列表(https://modelscope.cn/models/qwen/Qwen2-7B-Instruct-GGUF/files),我们选择qwen2-7b-instruct-q5_k_m.gguf并下载:

Qwen2-7B量化模型文件

我们可以根据自己需要,选择下载其它版本的模型文件!

启动Qwen2-7B-Instruct大模型

GGUF模型量化文件下载完成后,我们就可以来运行Qwen2-7B大模型了。

在启动Qwen2-7B大模型之前,我们首先需要安装Python依赖包列表:

pip install llama-cpp-python
pip install openai
pip install uvicorn
pip install starlette
pip install fastapi
pip install sse_starlette
pip install starlette_context
pip install pydantic_settings

然后打开一个Terminal终端窗口,切换到GGUF模型文件目录,启动Qwen2-7B大模型(./qwen2-7b-instruct-q5_k_m.gguf即为上一步下载的模型文件路径):

# 启动Qwen2大模型

# n_ctx=20480代表单次回话最大20480个Token数量
python -m llama_cpp.server \
   --host 0.0.0.0 \
   --model ./qwen2-7b-instruct-q5_k_m.gguf \
   --n_ctx 20480

Qwen2-7B启动成功

Qwen2-7B-instruct 命令行对话客户端

### 快速部署 Qwen2-VL-7B 视觉大模型的最佳实践 #### 准备环境 为了确保顺利部署 Qwen2-VL-7B 模型,建议先安装必要的依赖工具并配置开发环境。这包括但不限于 Git LFS 以及 Python 环境设置。 ```bash git lfs install ``` 此命令用于初始化 Git Large File Storage (LFS),这对于处理大型文件(如预训练模型权重)至关重要[^2]。 #### 获取预训练模型 通过克隆仓库来获取已经预先训练好的 Qwen2-VL-7B 模型: ```bash git clone https://www.modelscope.cn/Qwen/Qwen2-VL-7B-Instruct.git /root/sj-tmp ``` 上述代码片段展示了如何从指定 URL 下载所需资源到本地路径 `/root/sj-tmp` 中。 #### 设置推理框架 对于高效的在线推理服务构建,推荐采用 vLLM 推理库作为支撑平台之一。它能够提供高性能的同时保持较低延迟特性,非常适合于生产环境中运行大规模语言模型。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name_or_path = "/root/sj-tmp" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) ``` 这段 Python 代码说明了加载 tokenizer model 的过程,并将其迁移到 GPU 或 CPU 上执行进一步的任务[^3]。 #### 实现简单交互界面 为了让用户更方便地与已部署的大规模视觉语言模型互动,可以创建一个简易的 Web 应用程序接口(API)或者图形化用户界面(GUI)。这里给出基于 Flask 构建 RESTful API 的例子: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): input_text = request.json.get('input') inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) response = {"output": result} return jsonify(response), 200 if __name__ == "__main__": app.run(host='0.0.0.0', port=8080) ``` 以上脚本定义了一个 HTTP POST 方法 '/predict' 来接收 JSON 请求体中的输入文本字符串,经过编码转换成张量形式送入模型预测后返回解码后的输出结果给客户端应用程序使用。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值