从零到CUDA:10分钟搞定NVIDIA显卡计算

【投稿赢 iPhone 17】「我的第一个开源项目」故事征集:用代码换C位出道! 10w+人浏览 446人参与

不管你是想跑深度学习模型、加速工业质检图片处理,还是刚接触 “GPU 计算” 这个词,只要你有 NVIDIA 显卡,这篇教程能让你从 “完全不懂” 到 “顺利用上 CUDA”—— 没有复杂原理,全是 “傻瓜式操作”:每步都告诉你 “点哪个按钮、输哪行命令、等多久、出现啥算对”,连新手最慌的 “命令输错了怎么办”“弹窗选哪个” 都提前说清楚,跟着走,不用问人!

一、先搞懂 3 个 “小白必问”:不懵了再动手

动手前先解决 3 个最容易卡住的问题,避免白忙活:

1. 我家电脑能装 CUDA 吗?10 秒判断!

只有 NVIDIA 显卡能装!别瞎折腾,按这个步骤查:

  • Windows 用户:右键桌面 → 能看到 “NVIDIA 控制面板”→ 能装;看不到(比如是 AMD/Intel 显卡)→ 不用继续了。
  • 还没装 Windows 的:看电脑包装 / 说明书,显卡型号带 “GTX”“RTX”“Tesla”(比如 GTX 1060、RTX 4060)→ 能装;带 “AMD Radeon”“Intel UHD”→ 不能装。

⚠️ 小提醒:太老的 NVIDIA 显卡不行(比如 GTX 950 及以前),GTX 10 系列、RTX 20/30/40 系列都没问题。

2. 为啥要装 “双系统”?只装一个不行吗?

简单说:Windows 用来日常用,Linux 用来跑模型,新手选 “Windows+Ubuntu” 组合最稳:

  • 只装 Windows:能办公、用画图软件,但跑模型时容易卡、占内存多;
  • 只装 Linux:跑模型超稳,但装个微信、PS 都麻烦,日常用不方便;
  • 双系统:开机选 Windows 聊微信,选 Ubuntu 跑模型,两不误。

3. 提前准备这些东西!(附下载链接,点就能下)

别中途找文件,提前把这些存到桌面,按表格核对:

工具 / 文件用途下载方式(新手直接点)
U 盘(≥8GB)做 Linux 启动盘普通 U 盘就行,必须提前备份里面的文件(会被格式化)
Rufus制作 U 盘启动盘官网下载(Windows 用,下载后双击就能开,不用安装)
Ubuntu 镜像Linux 系统安装包Ubuntu 官网(选 “22.04 LTS”,LTS = 长期稳定,新手别选其他版本)
CUDA ToolkitCUDA 核心安装包NVIDIA 官网(后面教你怎么选版本,不用现在下)
移动硬盘(可选)备份数据怕删错 Windows 文件就备一个,把照片、文档拷进去

二、关键第一步:选对 CUDA 版本!装错必报错(新手也能选对)

CUDA 版本不能乱选,要和 “显卡驱动 + 系统” 匹配,按下面 3 步来,不用懂原理:

步骤 1:查显卡能装的 “最高 CUDA 版本”(Windows 为例)

  1. 右键桌面 → 打开 “NVIDIA 控制面板”→ 顶部点 “帮助”→ “系统信息”;
  2. 弹窗口后切到 “组件” 标签,找到 “NVIDIA 驱动程序版本”(比如我的是 551.23);
  3. 用下面的表对应 “最高能装的 CUDA 版本”,记下来(比如驱动 551.23→最高装 12.4):
    NVIDIA 驱动版本支持的最高 CUDA 版本
    551.xx(比如 551.23)12.4
    535.xx(比如 535.161)12.2
    525.xx(比如 525.125)12.0

⚠️ 重要:你装的 CUDA 版本不能超过这个最高版本!推荐选 “12.2”(比最新版 12.4 更稳定,少出问题)。

步骤 2:下载对应系统的 CUDA 安装包

打开 NVIDIA CUDA 下载页,按下面的 “选项组合” 点,别乱改:

系统选什么选项
Ubuntu 22.04系统→Linux → 架构→x86_64 → 发行版→Ubuntu → 版本→22.04 → 安装方式→deb (local)
Windows 10/11系统→Windows → 架构→x86_64 → 版本→10(11 也选 10,兼容) → 安装方式→exe (local)

选完后,页面会显示一串 “安装命令”,不用记!后面会一步步教你复制粘贴。

三、先装双系统:Windows→Ubuntu(新手不出错的顺序)

如果电脑已经有 Windows,直接跳 “给 Ubuntu 留空间”;没有就先装 Windows(找个装机 U 盘按提示装,很简单),再装 Ubuntu(避免删光数据)。

1. 制作 Ubuntu 启动盘(10 分钟搞定,不用懂命令)

  1. 插好 U 盘(备份完数据!),打开 Rufus(刚下载的);
  2. 按下面的 “傻瓜式设置” 来,每步都标清楚了:
    • ① “设备”:选你的 U 盘(比如 “Kingston DataTraveler 3.0”,别选成硬盘了!);
    • ② “引导类型选择”:点 “选择”→ 找到桌面的 Ubuntu 22.04 镜像(后缀.iso);
    • ③ “分区类型”:选 “GPT”(现在电脑都是 UEFI 启动,选这个才能开机);
    • ④ “目标系统类型”:选 “UEFI”;
  3. 点 “开始”→ 弹 “警告”(会格式化 U 盘)→ 点 “确定”→ 等进度条满(5-10 分钟,别拔 U 盘);
  4. 进度条满了,启动盘就做好了,U 盘图标会变成 “Ubuntu” 样式。

2. 给 Ubuntu 留磁盘空间(在 Windows 里操作)

要在 Windows 的硬盘里划一块地方给 Ubuntu,步骤:

  1. 右键 “此电脑”→ “管理”→ “磁盘管理”;
  2. 找一个空闲多的磁盘(比如 D 盘,别选 C 盘!)→ 右键它→ “压缩卷”;
  3. “压缩空间量”:跑模型填 “102400”(100GB),日常用填 “51200”(50GB)→ 点 “压缩”;
  4. 压缩后会出现一块 “未分配” 的黑色空间(比如 100GB),不用管它,装 Ubuntu 时会用。

3. 安装 Ubuntu(跟着点,不用懂原理)

  1. 插好启动盘,重启电脑;开机时快速按 “F2”“F12” 或 “Del”(不同电脑不一样,开机屏幕会提示,比如联想 F12、戴尔 F12、华硕 F2)→ 进入 BIOS;
  2. 在 BIOS 里找 “Boot Option #1”(第一启动项)→ 选 “U 盘名称”(比如 “UEFI: Kingston DataTraveler”)→ 按 F10 保存退出(电脑会自动重启);
  3. 进入 Ubuntu 安装界面,按下面步骤点:
    • ① 选 “Install Ubuntu”(别选 “Try Ubuntu”,那是试用,重启就没了);
    • ② 语言选 “中文(简体)”→ 点 “继续”;
    • ③ 键盘布局选 “汉语”→ 点 “继续”;
    • ④ 网络:连你家 WiFi(别用手机热点,不稳定)→ 点 “继续”;
    • ⑤ 更新和其他软件:选 “正常安装”+“安装第三方软件(用于图形和 Wi-Fi 硬件等)”→ 点 “继续”;
    • ⑥ 安装类型:必须选 “其他选项”(选 “清除磁盘并安装” 会删光所有数据!)→ 点 “继续”;
    • ⑦ 分区(最关键!一步都别错):
      找到 “未分配” 的黑色空间→ 点下面的 “+”→ 分 4 个区,每个区的设置如下:
      分区大小挂载点分区类型操作步骤
      2GB/boot逻辑分区大小填 2048→ 挂载点选 “/boot”→ 分区类型选 “逻辑分区”→ 点 “确定”
      16GB(内存 2 倍)swap逻辑分区大小填 16384(内存 8GB 就填 8192)→ 挂载点选 “swap”→ 点 “确定”
      50GB/逻辑分区大小填 51200→ 挂载点选 “/”→ 点 “确定”
      剩下的空间/home逻辑分区大小不用填(自动用剩下的)→ 挂载点选 “/home”→ 点 “确定”
      ⚠️ 每个区的 “用于” 都选 “Ext4 日志文件系统”,别选错!
    • ⑧ 选 “安装启动引导器的设备”:找到刚才分的 “/boot” 分区(比如 /dev/sda5,看你分的 /boot 是哪个)→ 点 “现在安装”;
    • ⑨ 地区选 “上海”→ 点 “继续”;
    • ⑩ 输 “用户名” 和 “密码”(一定要记住!登录 Ubuntu 要用)→ 点 “继续”;
  4. 等安装完成(20-30 分钟,中间别断网)→ 点 “现在重启”→ 重启时拔了 U 盘(不然又进安装界面)。

4. 切换双系统(开机就能选)

重启后会出现 “GRUB” 界面:

  • 选 “Ubuntu”→ 进 Linux 系统;
  • 选 “Windows Boot Manager”→ 回 Windows 系统;
    以后每次开机都能这么选,不用再插 U 盘。

四、Linux(Ubuntu)装 CUDA:命令复制粘贴就行

Linux 装 CUDA 最容易卡壳,这里把 “每句命令的作用、输错了怎么办” 都说明,新手不用懂命令,复制粘贴就行:

1. 禁用 nouveau 驱动(必做!不然显卡打架)

Ubuntu 自带的 “nouveau 开源驱动” 会和 NVIDIA 驱动冲突,必须禁用:

  1. 打开 Ubuntu 的 “终端”(快捷键:Ctrl+Alt+T,记住这个键,后面常用);
  2. 输第一句命令(打开配置文件),输完按回车:
    sudo gedit /etc/modprobe.d/blacklist-nouveau.conf
    

    弹 “[sudo] password for 你的用户名: ”→ 输你登录 Ubuntu 的密码(输的时候看不到字符,正常,输完按回车);
  3. 弹空白文本编辑器→ 复制下面 2 行,粘贴进去:
    blacklist nouveau
    options nouveau modeset=0
    
  4. 点编辑器左上角 “保存”→ 关闭编辑器;
  5. 回终端输第二句命令(更新内核):
    sudo update-initramfs -u
    
  6. 输第三句命令(重启电脑):
    sudo reboot
    
  7. 重启后验证:打开终端→ 输lsmod | grep nouveau→ 没有任何输出→ 禁用成功!有输出就重新做一遍。

2. 装 NVIDIA 显卡驱动(和 CUDA 匹配)

新手别用命令装,用图形界面更简单,不会错:

  1. 打开 Ubuntu 的 “应用列表”(左下角九宫格图标)→ 找 “软件和更新”(图标是齿轮 + 扳手);
  2. 切到 “附加驱动” 标签→ 等系统扫描 1-2 分钟→ 会出现几个 NVIDIA 驱动选项;
  3. 选 “NVIDIA driver metapackage from nvidia-driver-535 (proprietary)”(后面带 “proprietary”,535 对应 CUDA 12.2,别选其他版本);
  4. 点 “应用更改”→ 输密码→ 等安装完成(10 分钟)→ 点 “关闭”→ 重启电脑;
  5. 验证:重启后打开终端→ 输nvidia-smi→ 显示显卡信息(比如 “RTX 4060”“Driver Version: 535.161.07”)→ 驱动装好了!

3. 装 CUDA Toolkit(复制命令,不用改)

回到 NVIDIA CUDA 下载页(刚才选 Ubuntu 的页面),把页面上的 6 条命令 “一条一条复制到终端”(每条输完等上一条完成,别一起粘):

  1. 第一条(下载配置文件,直接复制页面的,别自己输):
    wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
    

    ⚠️ 若提示 “wget: 未找到命令”→ 先输sudo apt install wget→ 按回车安装,再输上面的命令;
  2. 第二条(移动文件):
    sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
    
  3. 第三条(导入密钥):
    sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
    
  4. 第四条(添加软件源):
    sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"
    

    弹 “按回车继续或 Ctrl+C 取消”→ 按回车;
  5. 第五条(更新软件列表):
    sudo apt-get update
    
  6. 第六条(安装 CUDA 12.2,换成你的版本就改数字,比如 12.4 输 cuda-12-4):
    sudo apt-get install cuda-12-2
    

    输 “y” 按回车→ 等安装完成(10-20 分钟,别断网)。

4. 配置 CUDA 环境变量(不然用不了)

装完 CUDA 要告诉系统 “CUDA 在哪”,步骤:

  1. 打开终端→ 输命令:
    sudo gedit ~/.bashrc
    
  2. 滚动到文件最下面→ 复制下面 3 行(把 “12.2” 换成你的 CUDA 版本)→ 粘贴:
    export PATH=/usr/local/cuda-12.2/bin:$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH
    export CUDA_HOME=/usr/local/cuda-12.2
    
  3. 点 “保存”→ 关闭编辑器;
  4. 输命令(让环境变量生效,必须输!):
    source ~/.bashrc
    

五、Windows 装 CUDA:比 Linux 简单!跟着点就行

Windows 装 CUDA 不用输命令,重点是 “别装错驱动”,步骤:

1. 检查显卡驱动(之前查过就跳过)

  1. 右键桌面→ “NVIDIA 控制面板”→ “帮助”→ “系统信息”→ “组件”→ 确认驱动版本≥535.xx(CUDA 12.2 要求);
  2. 若版本不够:打开 “GeForce Experience”(微软应用商店搜 “GeForce Experience”,免费)→ “驱动程序”→ “下载并安装”→ 重启电脑。

2. 安装 CUDA Toolkit(选对组件是关键)

  1. 双击下载的 CUDA exe 安装包(比如 “cuda_12.2.0_535.54.03_windows.exe”);
  2. 弹 “提取目录”→ 默认就行→ 点 “确定”(提取完自动进安装界面);
  3. 点 “同意并继续”→ 选 “自定义(高级)”(别选 “精简”,会装冗余组件,还可能冲突)→ 点 “下一步”;
  4. 组件选择(按下面勾,别乱勾):
    • 必勾:CUDA Toolkit 12.2、CUDA Samples(用来验证 CUDA);
    • 不勾:NVIDIA Graphics Driver(已经更新过驱动,勾了会冲突);
    • 其他组件(比如 Visual Studio Integration):没装 VS 就不勾,装了可以勾;
  5. 安装路径默认(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2)→ 别改中文路径(比如 “D:\CUDA 安装” 会报错)→ 点 “下一步”→ 等安装完成(10 分钟)。

3. 确认环境变量(系统自动配,检查下就行)

  1. 右键 “此电脑”→ “属性”→ “高级系统设置”→ “环境变量”;
  2. 看 “系统变量” 里有没有这些(没有就手动加):
    • 变量名:CUDA_PATH,变量值:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2
    • 变量名:Path→ 双击→ 看有没有这两个路径(没有就点 “新建” 加):
      C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\bin
      C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\libnvvp
  3. 点 “确定”→ 重启电脑(环境变量要重启才生效)。

六、验证 CUDA:两步确认!不白装

装完一定要验证,不然可能 “看着装好了,实际用不了”,新手也能操作:

1. 基础验证:命令行查版本

Linux(Ubuntu):

打开终端,输 3 个命令,都有正常输出就对了:

  1. nvcc --version→ 输出 “release 12.2”(你的版本)→ CUDA 装好了;
  2. nvidia-smi→ 输出显卡型号、驱动版本→ 最后一行 “CUDA Version: 12.4”(驱动支持的最高版本,和 nvcc 不一样也正常);
  3. 跑示例程序(验证能调用显卡):
    # 进示例目录(换你的版本)
    cd /usr/local/cuda-12.2/samples/1_Utilities/deviceQuery
    # 编译程序
    sudo make
    # 运行程序
    ./deviceQuery
    

    最后一行 “Result = PASS”→ Linux 的 CUDA 能用了!
Windows:
  1. 打开 “命令提示符(管理员)”:开始菜单搜 “cmd”→ 右键 “以管理员身份运行”;
  2. nvcc --version→ 输出 CUDA 版本;
  3. 跑示例程序:开始菜单搜 “CUDA Samples 12.2”→ 打开 “deviceQuery”→ 弹窗口最后 “Result = PASS”→ Windows 的 CUDA 也能用了!

2. 实战验证:用 PyTorch 调用 CUDA(跑个小代码)

这一步证明 CUDA 真的能加速,双系统都能这么做:

  1. 安装 PyTorch(对应 CUDA 版本):
    • 打开PyTorch 官网→ 选 “Stable”→ “Windows/Linux”→ “Pip”→ “CUDA 12.1”→ 复制命令:
      pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
      
    • 粘贴到终端(Linux)或 CMD(Windows)→ 按回车安装(5-10 分钟)。
  2. 跑验证代码:
    • Linux 输python3,Windows 输python→ 打开 Python;
    • 复制下面代码→ 粘贴→ 按回车:
      import torch
      print(torch.cuda.is_available())  # 输出True就对了
      print(torch.cuda.get_device_name(0))  # 输出你的显卡型号
      
    • 输出True+ 显卡型号→ CUDA 真的能用了!以后跑模型加一句device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),就能用 GPU 加速。

七、新手常踩的 8 个坑!提前避开,少走 2 小时弯路

  1. Linux 输命令提示 “权限不够”
    解决:命令前面加sudo,比如sudo gedit xxx(sudo = 管理员权限)。

  2. Linux 下nvidia-smi报错 “找不到命令”
    解决:重新做 “配置 CUDA 环境变量” 的步骤,再重启终端。

  3. Windows 下nvcc --version报错 “不是内部命令”
    解决:检查Path里有没有 CUDA 的bin目录,加好后重启电脑。

  4. 安装 Ubuntu 时 “磁盘空间不足”
    解决:重新在 Windows 下压缩卷,至少留 50GB。

  5. 双系统切换后 Linux 驱动失效
    解决:Windows 下关闭快速启动→ 控制面板→ 电源选项→ 选择电源按钮的功能→ 取消 “启用快速启动”→ 重启。

  6. 装 CUDA 时提示 “依赖包不足”
    解决:Ubuntu 终端输sudo apt-get update,再重新装 CUDA。

  7. 跑代码提示 “CUDA out of memory”
    解决:显存不够,把模型的batch_size改小(比如从 32 改成 8),或关闭其他占显存的程序。

  8. Ubuntu 开机卡在黑屏界面
    解决:重启→ 按 Shift 调出 GRUB→ 选 “Ubuntu 高级选项”→ 选带 “recovery mode” 的→ 进后选 “dpkg” 修复→ 重启。

八、总结:跟着做,你已经成功了!

到这里,你已经搞定了:

  1. 双系统(Windows+Ubuntu),开机能自由切换;
  2. 双系统下 CUDA 的安装与配置,命令行验证通过;
  3. 用 PyTorch 调用 CUDA,证明能加速深度学习。

接下来你可以用 CUDA 跑工业质检模型、处理无人机巡检图片,或者做自己的项目 ——CUDA 已经为你准备好加速了!遇到问题回头看 “新手常踩的坑”,90% 的问题都能解决,不用慌~

### 快速入门 DeepSeek 教程 对于希望快速上手并配置 DeepSeek 的用户而言,了解基本的操作步骤至关重要。为了简化这一过程,下面提供了一个简洁明了的指南。 #### 启动 DeepSeek 模型 在 Windows 环境下,可以通过简单的命令行指令迅速启动所需版本的 DeepSeek 模型。例如,要启动 `deepseek-r1` 版本为 `1.5b` 的模型,只需执行如下命令: ```bash ollama run deepseek-r1:1.5b ``` 这将立即激活指定大小的语言模型实例[^1]。 #### 进入交互模式 除了上述方法外,还可以通过特定命令开启与更大型号如 `7b` 参数量级的 DeepSeek-R1 之间的互动会话。具体做法是在终端里键入下列代码片段: ```bash ollama run deepseek-r1:7b ``` 此操作允许使用者直接同高性能的大规模预训练模型交流对话[^2]。 #### 配置环境前的要求 考虑到不同用户的计算资源差异,在着手安装之前应当确认满足最低限度的硬件条件以及必要的软件组件。理想的设置建议配备 NVIDIA GPU(至少 RTX 3090),搭配不少于 32 GB RAM 和大约 50 GB 可用磁盘空间;而对于那些不具备高端图形处理器的情况,则需确保 CPU 支持 AVX2 指令集,并留有充足的内存和硬盘容量用于承载整个框架及其依赖项。此外,操作系统方面兼容 Windows、macOS 或 Linux 平台,而 Docker 则成为利用 Open Web UI 功能不可或缺的一部分[^3]。 #### 关于显卡的选择指导 当面对众多类型的显示适配器选项时,合理评估自身设备的具体规格显得尤为重要。表列出了部分常见 Nvidia GeForce GTX/RTX 系列产品的基本信息,包括但不限于显存容量、CUDA 核心数量及理论浮点运算能力等指标,帮助读者更好地判断哪款产品最适合自己当前的应用场景[^4]。 | 显卡型号 | 显存 (GB) | CUDA 核心数 | 理论峰值性能 | | --- | --- | --- | --- | | GTX 1050 Ti | 4 | 768 | 2.4 TFLOPS | | ... | ... | ... | ... | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值