不管你是想跑深度学习模型、加速工业质检图片处理,还是刚接触 “GPU 计算” 这个词,只要你有 NVIDIA 显卡,这篇教程能让你从 “完全不懂” 到 “顺利用上 CUDA”—— 没有复杂原理,全是 “傻瓜式操作”:每步都告诉你 “点哪个按钮、输哪行命令、等多久、出现啥算对”,连新手最慌的 “命令输错了怎么办”“弹窗选哪个” 都提前说清楚,跟着走,不用问人!
一、先搞懂 3 个 “小白必问”:不懵了再动手
动手前先解决 3 个最容易卡住的问题,避免白忙活:
1. 我家电脑能装 CUDA 吗?10 秒判断!
只有 NVIDIA 显卡能装!别瞎折腾,按这个步骤查:
- Windows 用户:右键桌面 → 能看到 “NVIDIA 控制面板”→ 能装;看不到(比如是 AMD/Intel 显卡)→ 不用继续了。
- 还没装 Windows 的:看电脑包装 / 说明书,显卡型号带 “GTX”“RTX”“Tesla”(比如 GTX 1060、RTX 4060)→ 能装;带 “AMD Radeon”“Intel UHD”→ 不能装。
⚠️ 小提醒:太老的 NVIDIA 显卡不行(比如 GTX 950 及以前),GTX 10 系列、RTX 20/30/40 系列都没问题。
2. 为啥要装 “双系统”?只装一个不行吗?
简单说:Windows 用来日常用,Linux 用来跑模型,新手选 “Windows+Ubuntu” 组合最稳:
- 只装 Windows:能办公、用画图软件,但跑模型时容易卡、占内存多;
- 只装 Linux:跑模型超稳,但装个微信、PS 都麻烦,日常用不方便;
- 双系统:开机选 Windows 聊微信,选 Ubuntu 跑模型,两不误。
3. 提前准备这些东西!(附下载链接,点就能下)
别中途找文件,提前把这些存到桌面,按表格核对:
工具 / 文件 | 用途 | 下载方式(新手直接点) |
---|---|---|
U 盘(≥8GB) | 做 Linux 启动盘 | 普通 U 盘就行,必须提前备份里面的文件(会被格式化) |
Rufus | 制作 U 盘启动盘 | 官网下载(Windows 用,下载后双击就能开,不用安装) |
Ubuntu 镜像 | Linux 系统安装包 | Ubuntu 官网(选 “22.04 LTS”,LTS = 长期稳定,新手别选其他版本) |
CUDA Toolkit | CUDA 核心安装包 | NVIDIA 官网(后面教你怎么选版本,不用现在下) |
移动硬盘(可选) | 备份数据 | 怕删错 Windows 文件就备一个,把照片、文档拷进去 |
二、关键第一步:选对 CUDA 版本!装错必报错(新手也能选对)
CUDA 版本不能乱选,要和 “显卡驱动 + 系统” 匹配,按下面 3 步来,不用懂原理:
步骤 1:查显卡能装的 “最高 CUDA 版本”(Windows 为例)
- 右键桌面 → 打开 “NVIDIA 控制面板”→ 顶部点 “帮助”→ “系统信息”;
- 弹窗口后切到 “组件” 标签,找到 “NVIDIA 驱动程序版本”(比如我的是 551.23);
- 用下面的表对应 “最高能装的 CUDA 版本”,记下来(比如驱动 551.23→最高装 12.4):
NVIDIA 驱动版本 支持的最高 CUDA 版本 551.xx(比如 551.23) 12.4 535.xx(比如 535.161) 12.2 525.xx(比如 525.125) 12.0
⚠️ 重要:你装的 CUDA 版本不能超过这个最高版本!推荐选 “12.2”(比最新版 12.4 更稳定,少出问题)。
步骤 2:下载对应系统的 CUDA 安装包
打开 NVIDIA CUDA 下载页,按下面的 “选项组合” 点,别乱改:
系统 | 选什么选项 |
---|---|
Ubuntu 22.04 | 系统→Linux → 架构→x86_64 → 发行版→Ubuntu → 版本→22.04 → 安装方式→deb (local) |
Windows 10/11 | 系统→Windows → 架构→x86_64 → 版本→10(11 也选 10,兼容) → 安装方式→exe (local) |
选完后,页面会显示一串 “安装命令”,不用记!后面会一步步教你复制粘贴。
三、先装双系统:Windows→Ubuntu(新手不出错的顺序)
如果电脑已经有 Windows,直接跳 “给 Ubuntu 留空间”;没有就先装 Windows(找个装机 U 盘按提示装,很简单),再装 Ubuntu(避免删光数据)。
1. 制作 Ubuntu 启动盘(10 分钟搞定,不用懂命令)
- 插好 U 盘(备份完数据!),打开 Rufus(刚下载的);
- 按下面的 “傻瓜式设置” 来,每步都标清楚了:
- ① “设备”:选你的 U 盘(比如 “Kingston DataTraveler 3.0”,别选成硬盘了!);
- ② “引导类型选择”:点 “选择”→ 找到桌面的 Ubuntu 22.04 镜像(后缀.iso);
- ③ “分区类型”:选 “GPT”(现在电脑都是 UEFI 启动,选这个才能开机);
- ④ “目标系统类型”:选 “UEFI”;
- 点 “开始”→ 弹 “警告”(会格式化 U 盘)→ 点 “确定”→ 等进度条满(5-10 分钟,别拔 U 盘);
- 进度条满了,启动盘就做好了,U 盘图标会变成 “Ubuntu” 样式。
2. 给 Ubuntu 留磁盘空间(在 Windows 里操作)
要在 Windows 的硬盘里划一块地方给 Ubuntu,步骤:
- 右键 “此电脑”→ “管理”→ “磁盘管理”;
- 找一个空闲多的磁盘(比如 D 盘,别选 C 盘!)→ 右键它→ “压缩卷”;
- “压缩空间量”:跑模型填 “102400”(100GB),日常用填 “51200”(50GB)→ 点 “压缩”;
- 压缩后会出现一块 “未分配” 的黑色空间(比如 100GB),不用管它,装 Ubuntu 时会用。
3. 安装 Ubuntu(跟着点,不用懂原理)
- 插好启动盘,重启电脑;开机时快速按 “F2”“F12” 或 “Del”(不同电脑不一样,开机屏幕会提示,比如联想 F12、戴尔 F12、华硕 F2)→ 进入 BIOS;
- 在 BIOS 里找 “Boot Option #1”(第一启动项)→ 选 “U 盘名称”(比如 “UEFI: Kingston DataTraveler”)→ 按 F10 保存退出(电脑会自动重启);
- 进入 Ubuntu 安装界面,按下面步骤点:
- ① 选 “Install Ubuntu”(别选 “Try Ubuntu”,那是试用,重启就没了);
- ② 语言选 “中文(简体)”→ 点 “继续”;
- ③ 键盘布局选 “汉语”→ 点 “继续”;
- ④ 网络:连你家 WiFi(别用手机热点,不稳定)→ 点 “继续”;
- ⑤ 更新和其他软件:选 “正常安装”+“安装第三方软件(用于图形和 Wi-Fi 硬件等)”→ 点 “继续”;
- ⑥ 安装类型:必须选 “其他选项”(选 “清除磁盘并安装” 会删光所有数据!)→ 点 “继续”;
- ⑦ 分区(最关键!一步都别错):
找到 “未分配” 的黑色空间→ 点下面的 “+”→ 分 4 个区,每个区的设置如下:分区大小 挂载点 分区类型 操作步骤 2GB /boot 逻辑分区 大小填 2048→ 挂载点选 “/boot”→ 分区类型选 “逻辑分区”→ 点 “确定” 16GB(内存 2 倍) swap 逻辑分区 大小填 16384(内存 8GB 就填 8192)→ 挂载点选 “swap”→ 点 “确定” 50GB / 逻辑分区 大小填 51200→ 挂载点选 “/”→ 点 “确定” 剩下的空间 /home 逻辑分区 大小不用填(自动用剩下的)→ 挂载点选 “/home”→ 点 “确定” ⚠️ 每个区的 “用于” 都选 “Ext4 日志文件系统”,别选错! - ⑧ 选 “安装启动引导器的设备”:找到刚才分的 “/boot” 分区(比如 /dev/sda5,看你分的 /boot 是哪个)→ 点 “现在安装”;
- ⑨ 地区选 “上海”→ 点 “继续”;
- ⑩ 输 “用户名” 和 “密码”(一定要记住!登录 Ubuntu 要用)→ 点 “继续”;
- 等安装完成(20-30 分钟,中间别断网)→ 点 “现在重启”→ 重启时拔了 U 盘(不然又进安装界面)。
4. 切换双系统(开机就能选)
重启后会出现 “GRUB” 界面:
- 选 “Ubuntu”→ 进 Linux 系统;
- 选 “Windows Boot Manager”→ 回 Windows 系统;
以后每次开机都能这么选,不用再插 U 盘。
四、Linux(Ubuntu)装 CUDA:命令复制粘贴就行
Linux 装 CUDA 最容易卡壳,这里把 “每句命令的作用、输错了怎么办” 都说明,新手不用懂命令,复制粘贴就行:
1. 禁用 nouveau 驱动(必做!不然显卡打架)
Ubuntu 自带的 “nouveau 开源驱动” 会和 NVIDIA 驱动冲突,必须禁用:
- 打开 Ubuntu 的 “终端”(快捷键:Ctrl+Alt+T,记住这个键,后面常用);
- 输第一句命令(打开配置文件),输完按回车:
sudo gedit /etc/modprobe.d/blacklist-nouveau.conf
弹 “[sudo] password for 你的用户名: ”→ 输你登录 Ubuntu 的密码(输的时候看不到字符,正常,输完按回车); - 弹空白文本编辑器→ 复制下面 2 行,粘贴进去:
blacklist nouveau options nouveau modeset=0
- 点编辑器左上角 “保存”→ 关闭编辑器;
- 回终端输第二句命令(更新内核):
sudo update-initramfs -u
- 输第三句命令(重启电脑):
sudo reboot
- 重启后验证:打开终端→ 输
lsmod | grep nouveau
→ 没有任何输出→ 禁用成功!有输出就重新做一遍。
2. 装 NVIDIA 显卡驱动(和 CUDA 匹配)
新手别用命令装,用图形界面更简单,不会错:
- 打开 Ubuntu 的 “应用列表”(左下角九宫格图标)→ 找 “软件和更新”(图标是齿轮 + 扳手);
- 切到 “附加驱动” 标签→ 等系统扫描 1-2 分钟→ 会出现几个 NVIDIA 驱动选项;
- 选 “NVIDIA driver metapackage from nvidia-driver-535 (proprietary)”(后面带 “proprietary”,535 对应 CUDA 12.2,别选其他版本);
- 点 “应用更改”→ 输密码→ 等安装完成(10 分钟)→ 点 “关闭”→ 重启电脑;
- 验证:重启后打开终端→ 输
nvidia-smi
→ 显示显卡信息(比如 “RTX 4060”“Driver Version: 535.161.07”)→ 驱动装好了!
3. 装 CUDA Toolkit(复制命令,不用改)
回到 NVIDIA CUDA 下载页(刚才选 Ubuntu 的页面),把页面上的 6 条命令 “一条一条复制到终端”(每条输完等上一条完成,别一起粘):
- 第一条(下载配置文件,直接复制页面的,别自己输):
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
⚠️ 若提示 “wget: 未找到命令”→ 先输sudo apt install wget
→ 按回车安装,再输上面的命令; - 第二条(移动文件):
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
- 第三条(导入密钥):
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
- 第四条(添加软件源):
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"
弹 “按回车继续或 Ctrl+C 取消”→ 按回车; - 第五条(更新软件列表):
sudo apt-get update
- 第六条(安装 CUDA 12.2,换成你的版本就改数字,比如 12.4 输 cuda-12-4):
sudo apt-get install cuda-12-2
输 “y” 按回车→ 等安装完成(10-20 分钟,别断网)。
4. 配置 CUDA 环境变量(不然用不了)
装完 CUDA 要告诉系统 “CUDA 在哪”,步骤:
- 打开终端→ 输命令:
sudo gedit ~/.bashrc
- 滚动到文件最下面→ 复制下面 3 行(把 “12.2” 换成你的 CUDA 版本)→ 粘贴:
export PATH=/usr/local/cuda-12.2/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH export CUDA_HOME=/usr/local/cuda-12.2
- 点 “保存”→ 关闭编辑器;
- 输命令(让环境变量生效,必须输!):
source ~/.bashrc
五、Windows 装 CUDA:比 Linux 简单!跟着点就行
Windows 装 CUDA 不用输命令,重点是 “别装错驱动”,步骤:
1. 检查显卡驱动(之前查过就跳过)
- 右键桌面→ “NVIDIA 控制面板”→ “帮助”→ “系统信息”→ “组件”→ 确认驱动版本≥535.xx(CUDA 12.2 要求);
- 若版本不够:打开 “GeForce Experience”(微软应用商店搜 “GeForce Experience”,免费)→ “驱动程序”→ “下载并安装”→ 重启电脑。
2. 安装 CUDA Toolkit(选对组件是关键)
- 双击下载的 CUDA exe 安装包(比如 “cuda_12.2.0_535.54.03_windows.exe”);
- 弹 “提取目录”→ 默认就行→ 点 “确定”(提取完自动进安装界面);
- 点 “同意并继续”→ 选 “自定义(高级)”(别选 “精简”,会装冗余组件,还可能冲突)→ 点 “下一步”;
- 组件选择(按下面勾,别乱勾):
- 必勾:CUDA Toolkit 12.2、CUDA Samples(用来验证 CUDA);
- 不勾:NVIDIA Graphics Driver(已经更新过驱动,勾了会冲突);
- 其他组件(比如 Visual Studio Integration):没装 VS 就不勾,装了可以勾;
- 安装路径默认(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2)→ 别改中文路径(比如 “D:\CUDA 安装” 会报错)→ 点 “下一步”→ 等安装完成(10 分钟)。
3. 确认环境变量(系统自动配,检查下就行)
- 右键 “此电脑”→ “属性”→ “高级系统设置”→ “环境变量”;
- 看 “系统变量” 里有没有这些(没有就手动加):
- 变量名:
CUDA_PATH
,变量值:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2
; - 变量名:
Path
→ 双击→ 看有没有这两个路径(没有就点 “新建” 加):
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\libnvvp
- 变量名:
- 点 “确定”→ 重启电脑(环境变量要重启才生效)。
六、验证 CUDA:两步确认!不白装
装完一定要验证,不然可能 “看着装好了,实际用不了”,新手也能操作:
1. 基础验证:命令行查版本
Linux(Ubuntu):
打开终端,输 3 个命令,都有正常输出就对了:
- 输
nvcc --version
→ 输出 “release 12.2”(你的版本)→ CUDA 装好了; - 输
nvidia-smi
→ 输出显卡型号、驱动版本→ 最后一行 “CUDA Version: 12.4”(驱动支持的最高版本,和 nvcc 不一样也正常); - 跑示例程序(验证能调用显卡):
# 进示例目录(换你的版本) cd /usr/local/cuda-12.2/samples/1_Utilities/deviceQuery # 编译程序 sudo make # 运行程序 ./deviceQuery
最后一行 “Result = PASS”→ Linux 的 CUDA 能用了!
Windows:
- 打开 “命令提示符(管理员)”:开始菜单搜 “cmd”→ 右键 “以管理员身份运行”;
- 输
nvcc --version
→ 输出 CUDA 版本; - 跑示例程序:开始菜单搜 “CUDA Samples 12.2”→ 打开 “deviceQuery”→ 弹窗口最后 “Result = PASS”→ Windows 的 CUDA 也能用了!
2. 实战验证:用 PyTorch 调用 CUDA(跑个小代码)
这一步证明 CUDA 真的能加速,双系统都能这么做:
- 安装 PyTorch(对应 CUDA 版本):
- 打开PyTorch 官网→ 选 “Stable”→ “Windows/Linux”→ “Pip”→ “CUDA 12.1”→ 复制命令:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
- 粘贴到终端(Linux)或 CMD(Windows)→ 按回车安装(5-10 分钟)。
- 打开PyTorch 官网→ 选 “Stable”→ “Windows/Linux”→ “Pip”→ “CUDA 12.1”→ 复制命令:
- 跑验证代码:
- Linux 输
python3
,Windows 输python
→ 打开 Python; - 复制下面代码→ 粘贴→ 按回车:
import torch print(torch.cuda.is_available()) # 输出True就对了 print(torch.cuda.get_device_name(0)) # 输出你的显卡型号
- 输出
True
+ 显卡型号→ CUDA 真的能用了!以后跑模型加一句device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
,就能用 GPU 加速。
- Linux 输
七、新手常踩的 8 个坑!提前避开,少走 2 小时弯路
-
Linux 输命令提示 “权限不够”
解决:命令前面加sudo
,比如sudo gedit xxx
(sudo = 管理员权限)。 -
Linux 下
nvidia-smi
报错 “找不到命令”
解决:重新做 “配置 CUDA 环境变量” 的步骤,再重启终端。 -
Windows 下
nvcc --version
报错 “不是内部命令”
解决:检查Path
里有没有 CUDA 的bin
目录,加好后重启电脑。 -
安装 Ubuntu 时 “磁盘空间不足”
解决:重新在 Windows 下压缩卷,至少留 50GB。 -
双系统切换后 Linux 驱动失效
解决:Windows 下关闭快速启动→ 控制面板→ 电源选项→ 选择电源按钮的功能→ 取消 “启用快速启动”→ 重启。 -
装 CUDA 时提示 “依赖包不足”
解决:Ubuntu 终端输sudo apt-get update
,再重新装 CUDA。 -
跑代码提示 “CUDA out of memory”
解决:显存不够,把模型的batch_size
改小(比如从 32 改成 8),或关闭其他占显存的程序。 -
Ubuntu 开机卡在黑屏界面
解决:重启→ 按 Shift 调出 GRUB→ 选 “Ubuntu 高级选项”→ 选带 “recovery mode” 的→ 进后选 “dpkg” 修复→ 重启。
八、总结:跟着做,你已经成功了!
到这里,你已经搞定了:
- 双系统(Windows+Ubuntu),开机能自由切换;
- 双系统下 CUDA 的安装与配置,命令行验证通过;
- 用 PyTorch 调用 CUDA,证明能加速深度学习。
接下来你可以用 CUDA 跑工业质检模型、处理无人机巡检图片,或者做自己的项目 ——CUDA 已经为你准备好加速了!遇到问题回头看 “新手常踩的坑”,90% 的问题都能解决,不用慌~