ChatGPT 与 DeepSeek 结合:提示词优化与代码生成的双重突破


———————————————————————————————————————————

在这里插入图片描述
前言综述
在人工智能技术迅猛发展的背景下,ChatGPT、DeepSeek 等大语言模型已成为科研与办公的核心工具。它们不仅颠覆了传统的数据处理与文本生成模式,更在机器学习建模、跨领域研究中展现出强大的赋能潜力。本次学习聚焦大语言模型在高效办公、科研全流程及深度学习中的深度应用,通过理论讲解与实战操作,系统解析从提示词优化到复杂模型开发的全链条技术,助力科研人员突破效率瓶颈,实现从数据处理到成果产出的智能化升级。

一、大语言模型基础与高效办公应用

大语言模型的核心优势体现在自然语言处理与自动化任务执行。通过提示词优化技巧(如设定身份、限定输出格式),可实现科研文献总结、商业报告生成、代码框架搭建等高效办公场景。例如,利用 ChatGPT-4o 的联网搜索功能实时获取领域前沿,通过 DeepSeek 的三阶互动逻辑拆解复杂问题,提升决策效率。在办公自动化方面,模型支持思维导图生成、PPT 制作、数据可视化等多元任务,甚至可辅助家庭健康管理与学生职业规划,展现出跨场景的普适性价值。

二、科研全流程赋能

从课题申报到论文发表,大语言模型贯穿科研全周期。在选题阶段,通过分析领域热点生成创新思路;文献综述环节,自动提取多文档关键结论并对比分析;实验设计中,辅助优化算法参数与流程设计。数据处理层面,模型可自动生成 Python 代码完成标准化、异常值处理及特征工程,并通过 Matplotlib、Seaborn 等库实现可视化。在论文写作中,支持从摘要生成到润色降重的全环节辅助,甚至模拟审稿人视角提供修改建议,显著提升科研产出质量与效率。

三、深度学习与跨领域实践

在机器学习领域,大语言模型与深度学习框架深度融合,实现 BP 神经网络、随机森林、卷积神经网络(CNN)等模型的代码自动生成与调优。例如,通过 ChatGPT-4o 生成 PyTorch 框架下的 CNN 模型结构,利用 DeepSeek 优化迁移学习参数,缩短建模周期。跨领域应用涵盖近红外光谱分析、遥感图像识别、自然语言处理等,如基于 YOLO 模型的实时目标检测、多模态阿尔茨海默病筛查程序开发。API 接口调用技术进一步拓展应用边界,支持构建定制化智能系统,推动科研成果向实际生产力转化。

第一章、2024大语言模型最新进展与ChatGPT各模型

1、2024 AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、最新前沿技术和发展趋势简介)

2、国内外大语言模型(ChatGPT 4O、Gemini、Claude、Llama3、Perplexity AI、文心一言、星火、通义千问、Kimi、智谱清言、秘塔AI等)对比分析

3、OpenAI 12天12场直播新功能解读与演示(ChatGPT O1模型、Canvas交互式编辑画布、联网Search功能、实时语音交互、Project新建文件夹、对话记录搜索等功能)

4、Llama3开源大语言模型的本地部署、对话与微调训练本地数据

5、ChatGPT-4o对话初体验(注册与充值、购买方法)

6、ChatGPT-4o科研必备GPT汇总介绍(寻找好用的GPTs模型、提示词优化、生成思维导图、生成PPT、生成视频、制定个性化的学习计划、检索论文、总结论文内容、总结视频内容、撰写论文、论文翻译、论文润色与修改、参考文献格式管理、论文评审、数据分析、生成代码、代码调试等)

7、GPT Store简介与使用

8、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

9、ChatGPT-4o对话记录保存与管理

10、Claude大语言模型对话初体验(对话界面主要功能介绍、上传数据文件分析并可视化、文献智能解读、自动生成代码等功能演示)

第二章、 ChatGPT-4o提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、常用的ChatGPT提示词模板

3、基于思维链(Chain of Thought, CoT)的ChatGPT提示词优化(让OpenAI o1推理能力变强的诀窍之一)

4、ChatGPT-4o提示词优化(Promptest、Prompt Perfect、PromptPal提示宝等)

5、ChatGPT-4o突破Token限制实现接收或输出万字长文(Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

6、控制ChatGPT-4o的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

7、保存喜欢的ChatGPT-4o提示词并一键调用

8.ChatGPT-4o提示词逆向工程(破解提示词的常用方法、对别人创建的GPTs提示词进行破解)

9.ChatGPT-4o提示词保护策略以及构建坚不可摧的GPTs

第三章、ChatGPT-4o助力日常生活、学习与工作

1、ChatGPT-4o助力中小学生功课辅导(写作文、作文批改、求解数学题、练习英语听说读写、物理计算、化学计算等)

2、ChatGPT-4o助力文案撰写与润色修改

3、ChatGPT-4o助力家庭健康管理(化验单结果解读、就诊咨询与初步诊断、常见慢病管理、日常营养膳食建议等)

4、ChatGPT-4o助力大学生求职与就业(撰写简历、模拟面试、职业规划等)

5、ChatGPT-4o助力商业工作(行业竞品检索与分析、产品创意设计与建议、推广营销策略与方案制定、撰写合同)

6、利用ChatGPT-4o创建精美的思维导图

7、利用ChatGPT-4o生成流程图、甘特图

8、 利用ChatGPT-4o制作PPT

9、 利用ChatGPT-4o自动创建视频

10、ChatGPT-4o辅助教师高效备课(苏格拉底式教学、为不同专业学生生成不同的教学内容等)

11、ChatGPT-4o辅助学生高效学习(利用GPTs生成专属学习计划)

12、将ChatGPT-4o对话记录中的数学公式完美复制到Word文档

第四章、基于ChatGPT-4o课题申报、论文选题及实验方案设计

1、课题申请书撰写技巧及要点剖析(项目名称、关键词、摘要、立项依据、参考文献、研究目标、研究内容、研究方案、关键科学问题、可行性分析、创新点与特色之处、预期研究成果、工作基础等)

2、利用ChatGPT-4o分析指定领域的热门研究方向

3、利用ChatGPT-4o辅助撰写、润色课题申报书的各部分内容

4、利用ChatGPT-4o总结指定论文的局限性与不足,并给出潜在的改进思路与建议

5、利用ChatGPT-4o评估指定改进思路新颖性与已发表的类似工作

6、利用ChatGPT-4o进一步细化改进思路,凝练论文的选题与创新点

7、利用ChatGPT-4o给出具体的算法步骤,并自动生成算法的Python示例代码框架

8、利用ChatGPT-4o设计完整的实验方案与数据分析流程

9、利用ChatGPT-4o给出论文Discussion部分的切入点和思路

10、案例演示与实操练习

第五章、基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写

1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、利用ChatGPT-4o实现联网检索文献

3、利用ChatGPT-4o阅读与总结分析学术论文内容(论文主要工作、创新点、局限性与不足、多文档对比分析等)

4、利用ChatGPT-4o解读论文中的系统框图工作原理

5、利用ChatGPT-4o解读论文中的数学公式含义

6、利用ChatGPT-4o解读论文中图表中数据的意义及结论

7、ChatGPT-4o总结Youtube视频内容

8、利用ChatGPT-4o完成学术论文的选题设计与优化

9、利用ChatGPT-4o自动生成论文的总体框架、论文摘要、前言介绍、文献综述、完整长篇论文等

10、利用ChatGPT-4o完成论文翻译(指定翻译角色和翻译领域、提供背景提示)

11、利用ChatGPT-4o实现论文语法校正

12、利用ChatGPT-4o完成段落结构及句子逻辑润色

13、利用ChatGPT-4o完成论文降重

14、利用ChatGPT-4o完成论文参考文献格式的自动转换

15、ChatGPT-4o辅助审稿人完成论文评审意见的撰写

16、ChatGPT-4o辅助投稿人完成论文评审意见的回复

17、ChatGPT-4o文献检索、论文写作必备GPTs总结

18、利用ChatGPT-4o完成发明专利idea的挖掘与构思

19、利用ChatGPT-4o完成发明专利交底书的撰写

20、最新加入:(实操演练)利用ChatGPT-4o with canvas完成人机交互协同修改论文(智能修改建议、篇幅调整、阅读水平等级调整、润色修改等)

第六章、ChatGPT-4o编程入门、科学计算、数据可视化、数据预处理【与Python融合】

1、Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello World;第三方模块的安装与使用;Python 2.x与Python 3.x对比)

2、Python基本语法(Python变量命名规则;Python基本数学运算;Python常用变量类型的定义与操作;Python程序注释)

3、Python流程控制(条件判断;for循环;while循环;break和continue)

4、Python函数与对象(函数的定义与调用;函数的参数传递与返回值;变量作用域与全局变量;对象的创建与使用)

5、Matplotlib的安装与图形绘制(设置散点、线条、坐标轴、图例、注解等属性;绘制多图;图的嵌套;折线图、柱状图、饼图、地图等各种图形的绘制)

6、Seaborn、Bokeh、Pyecharts等高级绘图库的安装与使用(动态交互图的绘制、开发大数据可视化页面等)

7、科学计算模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

8、利用ChatGPT-4o上传本地数据(Excel/CSV表格、txt文本、PDF、图片等)

9、利用ChatGPT-4o实现图像处理(图像缩放、旋转、裁剪、去噪与去模糊)

10、利用ChatGPT-4o实现描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:数据的相关分析)

11、常用的数据预处理方法(数据标准化与归一化、数据异常值与缺失值处理、数据离散化及编码处理、手动生成新特征)

12、融合ChatGPT-4o与Python的数据预处理代码自动生成与运行

13、利用ChatGPT-4o自动生成数据统计分析图表

14、利用ChatGPT-4o实现代码逐行

15、利用ChatGPT-4o实现代码Bug调试与自动修改

16、案例演示与实操练习

第七章、ChatGPT-4o机器学习建模及高级应用

1、BP神经网络的基本原理(人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、BP神经网络的Python代码实现(划分训练集和测试集、数据归一化)

3、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)

4、值得研究的若干问题(欠拟合与过拟合、评价指标选择、样本不平衡等)

5、BP神经网络中的ChatGPT提示词库

6、利用ChatGPT-4o实现BP神经网络模型的代码自动生成与运行

7、SVM的工作原理(核函数的作用是什么?什么是支持向量?如何解决多分类问题?)

8、决策树的工作原理(什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系)

9、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”的本质是什么?怎样可视化、解读随机森林的结果?)

10、Bagging与Boosting的区别与联系

11、AdaBoost vs. Gradient Boosting的工作原理

12、常用的GBDT算法框架(XGBoost、LightGBM)

13、决策树、随机森林、XGBoost、LightGBM中的ChatGPT提示词库讲解

14、利用ChatGPT-4o实现决策树、随机森林、XGBoost、LightGBM模型的代码自动生成与运行

15、案例演示与实操练习

第八章、ChatGPT-4o助力机器学习模型优化:变量降维与特征选择
1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理

3、常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)

4、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?选择、交叉、变异三个算子的作用分别是什么?)

5、PCA、PLS、特征选择、群优化算法的ChatGPT-4o提示词库

6、利用ChatGPT-4o及插件实现变量降维与特征选择算法的代码自动生成与运行

第九章、ChatGPT-4o实现卷积神经网络建模与代码自动生成
1、深度学习简介(深度学习大事记、深度学习与传统机器学习的区别与联系)

2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)

3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

4、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

5、卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

6、卷积神经网络中的ChatGPT-4o提示词库

7、利用ChatGPT-4o实现卷积神经网络模型的代码自动生成与运行

(1)CNN预训练模型实现物体识别;

(2)利用卷积神经网络抽取抽象特征;

(3)自定义卷积神经网络拓扑结构

8、案例演示与实操练习

第十章、ChatGPT-4o迁移学习建模与代码自动生成

1、迁移学习算法的基本原理

2、基于深度神经网络模型的迁移学习算法

3、迁移学习中的ChatGPT-4oT提示词库

4、利用ChatGPT-4o实现迁移学习模型的代码自动生成与运行

5、实操练习

第十一章、ChatGPT-4o助力RNN、LSTM建模与代码自动生成

1、循环神经网络RNN的基本工作原理

2、长短时记忆网络LSTM的基本工作原理

3、RNN与LSTM中的ChatGPT-4o提示词库

4、利用ChatGPT-4o实现RNN、LSTM模型的代码自动生成与运行

5、案例演示与实操练习

第十二章、ChatGPT-4o助力YOLO目标检测建模与代码自动生成

1、什么是目标检测?目标检测与目标识别的区别与联系

2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别

3、YOLO模型中的ChatGPT-4o提示词库

4、利用ChatGPT-4o实现YOLO目标检测模型的代码自动生成与运行

(1)利用预训练好的YOLO模型实现图像、视频、摄像头实时检测;

(2)数据标注演示(LabelImage使用方法介绍);

(3)训练自己的目标检测数据集

5、案例演示与实操练习

第十三章、ChatGPT-4o机器学习与深度学习建模的案例实践应用

1、利用ChatGPT-4o实现近红外光谱分析模型的建立、代码自动生成与运行

2、利用ChatGPT-4o实现生物医学信号(时间序列、图像、视频数据)分类识别与回归拟合模型的建立、代码自动生成与运行

3、利用ChatGPT-4o实现遥感图像目标检测、地物分类及语义分割模型的建立、代码自动生成与运行

4、利用ChatGPT-4o实现大气污染物预测模型的建立、代码自动生成与运行

5、利用ChatGPT-4o实现自然语言处理模型的建立、代码自动生成与运行

6、案例演示与实操练习

第十四章、ChatGPT-4o高级绘图技术

1、利用ChatGPT-4o DALL.E 3生成图像(下载图像、修改图像)

2、ChatGPT-4o DALL.E 3常用的提示词库(广告海报、Logo、3D模型、插画、产品包装、烹饪演示、产品外观设计、UI设计、吉祥物设计等)

3、ChatGPT-4o DALL.E 3中的多种视图(正视图、后视图、侧视图、四分之三视图、鸟瞰视图、全景视图、第一人称视角、分割视图、截面视图等)

4、ChatGPT-4o DALL.E 3中的多种光效(电致发光、化学发光、生物荧光、极光闪耀、全息光等)

5、ChatGPT-4o DALL.E 3格子布局与角色一致性的实现

6、ChatGPT-4o DALL.E 3生成动图GIF

7、Midjourney工具使用

8、Stable Diffusion工具使用

9、Runway图片生成动画工具使用

10、案例演示与实操练习

第十五章、基于ChatGPT-4o API接口调用与完整项目开发

1、GPT模型API接口的调用方法(API Key的申请、API Key接口调用方法与参数说明)

2、利用GPTAPI实现完整项目开发

(1)聊天机器人的开发

(2)利用GPT API和Text Embedding生成文本的特征向量

(3)构建基于多模态(语音、文本、图像)的阿尔茨海默病早期筛查程序

3、案例演示与实操练习

了解更多

V头像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值