从MCP基础到FastMCP实战应用

MCP(https://github.com/modelcontextprotocol)

MCP(模型上下文协议) 是一种专为 基于LLM的工具调用外部工具而设计的协议
本质上是 LLM ↔ 工具之间的RPC(远程过程调用) 的一种安全且一致的处理方式,
是一种 轻量级的JSON-RPC标准

我是韩国人,不是中国人。但最近在韩国,如果不使用MCP,就会被认为是跟不上潮流的人,MCP非常火热。我的博客虽然喜欢写大多数人能享受的编程理论文章,但由于理论文章的资料整理与验证需要耗费大量时间,再加上最近因为体力劳动没有太多时间,并且考虑到概念理解上Python非常适合,因此我打算用Python的FastMCP快速实现一个MCP。

1.一般来说,MCP结构如下所示:

[用户提示]

[LLM]

生成 "tool_call" (MCP)

↓ [

工具服务器执行(如FastMCP等)]

生成MCP响应 → 传递给LLM

LLM生成最终响应

2.MCP协议格式

实际上,MCP = JSON-RPC 2.0的子集
(即遵循JSON-RPC标准,但仅提供MCP特定的工具调用方式)

MCP字段

说明

jsonrpc

"2.0"(固定值)

method

要调用的工具名称

params

传递给工具的参数(字典形式)

id

调用标识符(自动递增等)

result

工具的执行结果

基本结构

{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "tool_name",
  "params": {
    "argument1": "value1",
    "argument2": 42
  }
}

2. 核心组成部分

1. tool_call (Claude → MCP服务器: 请求消息 )

当Claude判断需要调用工具时,会向MCP服务器发送以下的JSON-RPC 2.0请求消息

// Claude -> MCP服务器 (请求示例)
{
  "jsonrpc": "2.0",
  "id": 123, // 请求标识符(由Claude生成,与响应匹配)
  "method": "search_nature_articles", // 调用的工具(函数)名称
  "params": { // 将传递给工具(函数)的参数(字典形式)
    "keyword": "quantum computing",
    "max_results": 3 // 示例:附加参数
  }
}
2. MCP Server (本地或远程工具执行器)
  • Claude Desktop会在本地运行配置好的MCP服务器。
  • 必须注册tool_name(即method字段值),并将其绑定到可执行函数。
  • 在Python中,FastMCP可以轻松实现这一点。
@mcp.tool()
def search_nature_articles(keyword: str, max_results: int = 3): # 与params匹配
    ...
3. MCP Response (MCP服务器 → Claude: 响应消息 )
  • 工具(函数)在MCP服务器上执行后,其结果将以JSON-RPC 2.0响应消息 的形式返回给Claude。包括成功或失败(错误)两种情况。
// MCP服务器 -> Claude (成功响应示例)
{
  "jsonrpc": "2.0",
  "id": 123, // 必须与请求消息中的id相同
  "result": "'quantum computing'相关论文3篇搜索结果:\n1. Title A...\n..." // 工具执行结果(字符串、数字、列表、对象等均可)
}
// MCP服务器 -> Claude (错误响应示例)
{
  "jsonrpc": "2.0",
  "id": 123, // 与请求id相同(如果无法识别,也可以为null)
  "error": { // 发生错误时包含'error'对象而不是'result'
    "code": -32000, // 示例:服务器错误代码
    "message": "Springer Nature API密钥认证失败" // 错误消息
  }
}

为什么需要MCP?

用表格总结如下:

问题

MCP的解决方案

LLM无法执行代码

通过调用外部工具解决

结构化输入/输出困难

使用JSON-RPC实现一致的参数传递

工具错误处理困难

提供明确的错误响应

工具增多导致结构复杂

基于名称的路由 + 分离的服务器架构解决

要素

内容

协议名称

MCP(模型上下文协议)

技术基础

JSON-RPC 2.0

目标

让LLM能够安全地调用外部工具并接收响应

执行方式

在本地服务器或本地进程中运行MCP兼容服务器

典型实现

FastMCP(Python),server-filesystem(JS)

通信对象

Claude Desktop / Claude API

本文将指导如何快速在 VS Code 环境中设置开发 Claude MCP 系统的步骤。
这是使用 FastMCP 构建 MCP 服务器并运行基于 Python 的工具所需的配置。

FastMCP 是一个完整的 Claude 专用 MCP 工具服务器实现。

FastMCP (Python) 不直接打开端口

  • FastMCP 不会直接打开 TCP 套接字或 HTTP 服务器。

  • 相反,它通过 stdio(标准输入输出)与 Claude Desktop 进行通信

  • 换句话说,Claude 内部会以 stdin/stdout 的方式启动 MCP 进程来进行通信。


通常,许多示例中会有以下结构:

mcp_server.py
mcp_client.py

这种结构仅用于练习或调试 JSON-RPC 协议,但并不会与 Claude 实际集成(仅用于测试目的)。

因此,为了实现与 Claude 的实际集成,使用 FastMCP 是最简单的方法之一。接下来我们将使用 FastMCP 实际构建一个 MCP。

总结

  • FastMCP 是专为 Claude 设计的轻量级工具,避免了复杂的网络设置。
  • 它通过标准输入输出 (stdin/stdout) 与 Claude 桌面版通信。
  • 使用 FastMCP 可以更高效地完成实际的 MCP 开发和集成。

1. 安装 VS Code

2. 安装 VS Code 及扩展

启动 VS Code 后,在左侧的扩展(Extensions)选项卡中搜索并安装以下内容:

  • Python (ms-python.python)

  • (可选)Pylance、IntelliCode(用于增强自动补全功能)

3. 创建并打开项目文件夹

  • 在计算机上创建一个项目文件夹。在我的情况下,我将其命名为 PaperPort

4. 虚拟环境设置

  • 在 VSCode 菜单中选择 终端(Terminal) -> 新建终端(New Terminal),即可在 VS Code 内打开终端。
  • 在终端中输入以下命令,创建一个名为 .venv 的虚拟环境
python -m venv .venv
# 或者 python3 -m venv .venv (根据系统不同)

一定要用 '.venv' 吗? : venv 模块本身对虚拟环境文件夹的名称没有特别限制。你可以使用任何你想要的文件夹名称 。不过,如果文件夹名称前加了点(.),在 Linux 或 macOS 等 Unix 系统中会被视为隐藏文件夹,而 .venv 是一种常见的命名约定。

激活虚拟环境 : 创建虚拟环境后,你需要将其“激活”才能使用。根据终端类型不同,激活命令略有差异。

  • Windows (PowerShell):
  • .\.venv\Scripts\Activate.ps1
  • Windows (Command Prompt - cmd):
  • .\.venv\Scripts\activate.bat
  • macOS / Linux (bash/zsh):
  • source .venv/bin/activate

    实际上,查看 .venv 文件夹中的文件并执行相应的文件会更快。在我的情况下,生成了 activate.bat 文件,因此我执行了该文件。

    5. 设置所需的库

    根据我对 fastmcp 示例的搜索结果,requests 库也是必需的,因此可以一起安装。

    创建 requirements.txt 文件: 将安装的库列表保存到文件中,这样以后在其他环境中可以轻松地进行相同的设置,或者与他人共享。由于我的环境可能会有所不同,因此我会创建这个文件。

    使用 requirements.txt 安装依赖的命令:

    pip install -r requirements.txt

    6. 获取 API 密钥

  • 创建一个 .env 文件。.env 是环境变量文件,用于连接实际的密钥。
  • 直接将密钥写入 Python 文件的方式存在安全问题。

6-1. Claude API 访问方法

访问 https://www.anthropic.com/api 

创建密钥。

由于我的密钥是私人的,为了不展示,我特意创建了一个新账户。

访问 https://dev.springernature.com/ 并创建密钥。

同样,我的密钥不会展示。

7. 编写 MCP 工具代码

  • 在项目文件夹中创建一个以 .py 结尾的 Python 文件。
  • 我们的目标是创建一个 Nature 论文搜索工具,因此命名为 tool_nature.py
from fastmcp import FastMCP
import requests
from urllib.parse import urlencode
import os
from dotenv import load_dotenv
import sys

# 加载环境变量
load_dotenv()

# 初始化 MCP 实例
mcp = FastMCP("Nature API Tool Server")


# 定义常量
BASE_URL = "http://api.springernature.com/metadata/json"
API_KEY = os.getenv("NATURE_API_KEY")

  
# 如果没有 API 密钥则立即退出
if not API_KEY:
    print("[FATAL] 环境变量 'NATURE_API_KEY' 未设置。", file=sys.stderr)
    raise RuntimeError("[CRITICAL] 环境变量 'NATURE_API_KEY' 未设置。请在 .env 或系统环境中注册密钥。")

@mcp.tool()
def search_nature_articles(keyword: str, max_results: int = 3) -> str:

    """
    使用 Nature(Open API)根据给定的关键字搜索论文标题和摘要。
    结果将以摘要形式返回。

    """
    query_params = {
        "q": keyword,
        "api_key": API_KEY,
        "p": max_results

    }

  

    try:
        response = requests.get(f"{BASE_URL}?{urlencode(query_params)}")
        response.raise_for_status()
        data = response.json()
        records = data.get("records", [])

  

        if not records:
            return f"未找到关于 '{keyword}' 的结果。"

        output_lines = [f"\n 搜索结果: {keyword}"]
        for i, article in enumerate(records):
            title = article.get("title", "无标题")


            # 摘要类型安全处理

            abstract_raw = article.get("abstract", "无摘要")
            if isinstance(abstract_raw, dict):
                abstract = abstract_raw.get("p", "无摘要")
            else:
                abstract = abstract_raw

            url_list = article.get("url", [])
            url = url_list[0].get("value") if url_list else "N/A"
            abstract_summary = (abstract[:400] + "...") if len(abstract) > 400 else abstract
            output_lines.append(f"\n{i+1}. {title}\n   URL: {url}\n   摘要: {abstract_summary}")

  

        return "\n".join(output_lines)
    except requests.exceptions.RequestException as e:
        print(f"[ERROR] API 请求时发生错误: {e}", file=sys.stderr)
        return f"[ERROR] API 请求时发生错误: {e}"
    except Exception as e:
        print(f"[ERROR] 数据处理时发生错误: {e}", file=sys.stderr)
        return f"[ERROR] 数据处理时发生错误: {e}"

  

# 启动 MCP 服务器

if __name__ == "__main__":
 # --------------------------------------------------------------------------
    # [重要] 下面的 print 语句中的 'http://localhost:3333' 地址相关说明:
    # 1. 该地址仅为示例,不是实际的 FastMCP 服务器访问地址。
    # 2. 当使用 Claude Desktop 执行此脚本作为 MCP 服务器时,
    #    FastMCP 不使用网络端口(HTTP),
    #    而是通过 stdio(标准输入输出)与 Claude Desktop 进行通信。
    # 3. 因此无法直接访问 'http://localhost:3333'。
    # 4. 该地址仅供参考,假设将来使用 FastAPI 构建网络服务器或扩展时,
    #    可将其视为占位符或示例。

    # --------------------------------------------------------------------------
    print(" 正在启动 Nature 工具服务器... http://localhost:3333")

    mcp.run()

7-1 ## .vscode/launch.json 示例(用于调试)

{
  "version": "0.2.0",
  "configurations": [
    {
      "name": "运行 MCP 工具",
      "type": "python",
      "request": "launch",
      "program": "${workspaceFolder}/tool_nature.py",
      "envFile": "${workspaceFolder}/.env"
    }
  ]
}

8. 配置 MCP 服务器

配置通过修改 claude_desktop_config.json 文件进行。

可以在以下路径创建该文件:

  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json

或者: 点击 Claude 桌面左上角菜单 - 文件 - 设置 - 开发者 - 编辑配置按钮。

8-1. 手动注册 MCP 服务器(修改配置文件 claude_desktop_config.json

Claude Desktop 可以通过配置文件手动注册 MCP 服务器。

(示例是我的文件路径。)

{
    "mcpServers": {
        "nature": {
            "command": "Python 路径",
            "args": [
                "py 文件所在的路径"
            ]
        }
    }
}

运行 tool_nature.py 

9. 启动

首先需要在 VSCode 中运行 py 脚本。

然后可以在 Claude 桌面开发者界面看到正在运行的状态。

10. 现在可以做的事

摘要总结

Call tool search_nature_articles with keyword="感兴趣的领域关键词"

URL 返回

search_nature_articles(keyword="感兴趣的领域关键词")

获取两篇相关论文,并返回其摘要和 URL。

Bouns: 如果想在 "localhost:3333" 端口上通过 HTTP 接收请求,该怎么做?

这需要使用 FastAPI、Flask、aiohttp 等单独启动服务器 ,而不是使用 FastMCP

from fastapi import FastAPI
from fastmcp import MCPMiddleware

app = FastAPI()
app.add_middleware(MCPMiddleware, tools=[...])

# 这样 FastAPI 就会在 http://localhost:3333 端口上监听请求

→ 这种方式适用于使用 transport="sse" 的情况。
→ 当前的 FastMCP 默认不使用这种方式。

平時上傳的文章性質與以往有很大的不同,因此感到有些遺憾。

我的博客文章通常面向所有語言的使用者,但最近發表了一些針對特定語言的內容,對此我感到對欣賞本博客的所有讀者有些抱歉。

最近因為忙於工地工作,沒有時間撰寫理論性的文章。

對期待我的讀者們表示歉意。

<think>好的,我现在需要解决用户的问题:如何在Python中安装mcp.server.fastmcu库。用户提到这个库是Blender-MCP服务源码的一部分,由某位大佬在2025年3月7日首次提交,现在他想从零开始学习这个代码。首先,我应该考虑这个库是否已经发布到PyPI或者其他的Python包索引中。如果已经发布,用户可以直接使用pip安装。但根据用户的描述,这个库可能还处于开发阶段,尚未发布,所以可能需要从源码安装。 接下来,我需要检查用户提供的引用信息。引用[1]提到的是Blender-MCP源码的第一次提交时间是2025年3月7日,而用户提问的时间是2025年3月15日,仅一周之后。因此,这个库可能还没有正式发布,或者可能还在开发中,所以无法通过pip直接安装。这时候,用户可能需要从源代码仓库(如GitHub)克隆仓库,然后手动安装依赖项,再进行安装。 另外,用户提到想了解如何安装Pythonmcp.server.fastmcp。这可能意味着该库的模块结构是mcp.server.fastmcp,所以安装时需要确保正确的导入路径。通常,Python包的名称和导入名称可能不同,因此需要确认仓库中的结构是否符合预期。 可能的安装步骤包括: 1. 克隆仓库到本地。 2. 检查项目是否有setup.py或pyproject.toml文件,以便使用pip install .进行安装。 3. 安装所需的依赖项,可能通过requirements.txt文件。 4. 处理可能存在的依赖问题,比如特定版本的Python或其他库。 如果项目没有提供安装文件,可能需要手动将代码添加到Python路径中,但这不太规范。因此,建议用户先按照标准Python包安装流程尝试安装,并检查仓库的文档(如果有的话)。 此外,用户提到的时间是未来的日期(2025年),这可能是一个假设场景或者笔误。但处理方式相同,主要关注如何从源码安装。 总结可能的回答步骤: - 确认库是否已发布,若未发布则从源码安装。 - 提供克隆仓库和安装的命令。 - 处理可能的依赖问题。 - 建议查看项目文档或联系作者获取更多信息。</think>根据目前的信息,`mcp.server.fastmcp` 可能是 **Blender-MCP源码项目** 中的一个自定义模块,尚未发布到PyPI公共仓库[^1]。以下是两种可能的安装方式: --- ### 方法1:从源码安装(推荐) 1. **克隆仓库** ```bash git clone https://github.com/{作者仓库路径}/Blender-MCP.git cd Blender-MCP ``` 2. **安装依赖** ```bash # 若项目有requirements.txt pip install -r requirements.txt ``` 3. **以可编辑模式安装包** ```bash pip install -e . ``` --- ### 方法2:直接引用源码(临时调试) 若项目未提供`setup.py`,可将代码目录添加到Python路径: ```python import sys sys.path.append("/path/to/Blender-MCP") from mcp.server import fastmcp ``` --- ### 常见问题 1. **依赖冲突** 检查项目是否依赖特定版本的库(如`numpy>=1.20`),可通过`pip freeze`验证。 2. **C扩展编译失败** 若包含C/C++代码,需安装编译工具链(如Linux的`build-essential`,Windows的`Visual Studio Build Tools`)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值