提示工程访问控制矩阵:从概念到落地的完整指南
副标题:架构师视角下的权限设计、风险防控与最佳实践
摘要/引言
当大语言模型(LLM)从实验室走进企业生产系统,提示工程(Prompt Engineering) 逐渐成为AI应用的“操作系统”——它连接着业务需求与模型能力,定义了用户如何与AI交互。但随之而来的风险也日益凸显:
- 未授权的工程师修改了核心业务提示模板,导致AI生成错误订单摘要;
- 客服人员通过提示绕过模型安全策略,获取了用户敏感信息;
- 外部合作伙伴调用提示时,意外访问了内部专属的上下文数据;
- 多角色协作中,权限边界模糊导致“谁都能改、谁都不敢负责”的混乱。
传统的基于角色的访问控制(RBAC) 或离散权限校验 无法应对提示工程的特殊性:提示是动态的(依赖上下文参数)、多维度的(关联模型能力与业务场景)、全生命周期的(设计-调用-审计)。
为此,我们需要一套专为提示工程设计的访问控制矩阵(Prompt Engineering Access Control Matrix,简称PE-ACM)——它以提示为核心,覆盖“主体-操作-客体-环境”四要素,实现细粒度、动态化、可审计的权限管理。
读完本文,你将掌握:
- PE-ACM的核心设计逻辑与关键

订阅专栏 解锁全文
5839

被折叠的 条评论
为什么被折叠?



