AI入门6:基于Ollama+DeepSeek,用RAGFlow搭建本地知识库

书接上篇:分别使用Page Assist和AnythingLLM接入deepseek模型,并上传及分析本地知识:

AI入门:AI模型管家婆ollama的安装和使用-CSDN博客

AI入门2:本地AI部署,用ollama部署deepseek(私有化部署)-CSDN博客

AI入门3:给本地deepseek设置网页访问方式(UI插件Page Assist 安装)_deepseek本地部署网页访问-CSDN博客

  AI入门4:基于Ollama+DeepSeek,用Page Assist搭建本地知识库-CSDN博客 

AI入门5:基于Ollama+DeepSeek,用AnythingLLM搭建本地知识库-CSDN博客

本节介绍用RAGFlow搭建本地知识库,‌RAG(Retrieval-Augmented Generation)结合了检索和生成的技术,主要用于提升内容生成的质量和效率,RAGFlow则是RAG技术的一种具体实现,它通过模块化的方式组织RAG系统,提高了系统的灵活性和可扩展性。

和Page Assis,以及AnythingLLM相比,知识库命中率更高,软件体积更大,技术难度也更高,大家根据自己的情况选择。

准备工作

ollama和deepseek安装设置好,具体操作参考,上面AI入门1和2。

下载ragflow

在GitHub平台,下载ragflow,在百度搜索:GitHub ragflow

进入下载界面:

下载,解压后,在其docker目录,找到配置文件.env

编辑.env,找到RAGFLOW_IMAGE参数,把slim版本这一行注释掉,把下面完全版本的放开,因为完全版才有内置了的Embedding模型和Reranker模型,slim版本没有:

安装docker

下载后,安装过程很简单,就是有可能遇到安装环境的问题,大家参考:

windows下安装docker-CSDN博客

 docker设置(很重要)

打开docker,进入“settings”:

在docker engine里,设置docker的镜像信息,如果镜像不可用,后面的操作就会失败,我尝试了多次,所以下面的镜像看起来有了冗余,但是管用:

{
  "builder": {
    "gc": {
      "defaultKeepStorage": "20GB",
      "enabled": true
    }
  },
  "experimental": false,
  "features": {
    "buildkit": true
  },
  "registry-mirrors": [
    "https://docker.m.daocloud.io",
    "https://docker.1panel.live",
    "https://registry.docker-cn.com",
    "https://cr.console.aliyun.com",
    "https://mirror.ccs.tencentyun.com",
    "https://huecker.io/",
    "https://dockerhub.timeweb.cloud",
    "https://noohub.ru/",
    "https://dockerproxy.com",
    "https://docker.mirrors.ustc.edu.cn",
    "https://docker.nju.edu.cn",
    "https://xx4bwyg2.mirror.aliyuncs.com",
    "http://f1361db2.m.daocloud.io",
    "https://registry.docker-cn.com",
    "http://hub-mirror.c.163.com",
    "https://docker.mirrors.ustc.edu.cn",
    "https://docker.registry.cyou",
    "https://docker-cf.registry.cyou",
    "https://dockercf.jsdelivr.fyi",
    "https://docker.jsdelivr.fyi",
    "https://dockertest.jsdelivr.fyi",
    "https://mirror.aliyuncs.com",
    "https://dockerproxy.com",
    "https://mirror.baidubce.com",
    "https://docker.m.daocloud.io",
    "https://docker.nju.edu.cn",
    "https://docker.mirrors.sjtug.sjtu.edu.cn",
    "https://docker.mirrors.ustc.edu.cn",
    "https://mirror.iscas.ac.cn",
    "https://docker.rainbond.cc"
  ]
}

安装ragflow

到刚才下载完成的ragflow-main文件夹下,在上面这个路径输入cmd,进入命令行,输入命令

docker compose -f docker-compose.yml up -d

如果正常执行完,就可以了,如果不顺利,可能遇到镜像拉不下来的情况,如下图:

解决问题参考文档已备好:

docker找不到镜像,无法成功下载ragflow-main的问题_ragflow报错error response from daemon-CSDN博客 如果很不凑巧,你有遇到了“Error response from daemon: Ports are not available: exposing port TCP 0.0.0.0:xxx -> 0.0.0.0:0: listen tcp 0.0.0.0:xxx: bind: An attempt was made to access a socket in a way forbidden by its access permissions.”错误,类似像这样:

​解决问题参考文档已备好:

Docker容器的守护进程无法使用端口-CSDN博客

解决了重重问题,ragflow就会启动了:

配置 ragflow,添加模型

 通过浏览器,http://localhost:80/ 访问ragflow,注册一个账号:

进行如下设置:

如图:

1、修改语言

2、点击头像,再选择“模型供应商”

3、找到ollama,然后“添加模型”

填写模型信息:

注意,上图基础url需要用真实ip(真实ip查看方式:win+r,输入cmd,输入命令ipconfig),用http://127.0.0.1:11434/报错:

用真实ip,正常保存显示如下:

在ollama下,点击“显示更多模型”,可以查看及删除已设置模型:

然后,点击“系统模型设置”,选择刚才添加的模型,确定即可。

设置知识库

点击“知识库”标签,创建知识库:

填写知识库名称:

设置“嵌入模型”、“解析方法”,鼠标点击每个条目旁边的?图标,会有解释:

​保存后,进入知识上传界面,点击“新增文件”,将文件拖进来:

增加的文件,是未解析的状态,点击绿色运行按钮,进入解析 

解析完成后,显示“成功”状态,也可以通过批量按钮,进行批量操作:

然后,老试试知识库,点击“聊天”标签,新建助理,选择助理所对应的知识库:

 保存后,选择助手,新建一个聊天,问你的问题,就可以开始聊天了:

​还可以点击“搜索”标签,直接对知识库进行搜索。

日常启动和关闭模型

总结一下,日常启动,在ollama,和docker正常启动后(ollama和docker都有程序菜单,从开始中找到运行即可,运行后在右下角程序栏有运行图标),在doc窗口,先跳转到ragflow-main所在目录,执行命令:

docker compose -f docker/docker-compose.yml up -d

不需要的时候,通过docker命令关闭模型,不然有点费资源:

docker compose -f docker/docker-compose.yml down

 然后,再关闭docker和ollama(右下角程序栏有运行图标,右键菜单中关闭)。

日常启动和关闭的执行界面参考: 

其他

在系统使用过程中,如果遇到C盘越来越小,可以看看docker占用C盘过大的问题的处理:

docker占用C盘问题

**************本节内容华丽结束,主大家有个愉快的体验**************

### 关于 DeepseekOllamaRagflow本地部署实施方案 #### Deepseek 本地部署概述 Deepseek 是一款专注于自然语言处理的知识库解决方案,支持高效的文档管理和语义搜索功能。对于希望构建私有知识管理系统的用户来说,Deepseek 提供了一套完整的工具链来帮助完成从数据采集到索引建立再到最终查询服务的一系列操作[^1]。 为了在本地环境中安装和配置 Deepseek: 1. **环境准备** - 安装 Docker 及其相关组件。 - 配置必要的网络设置以便容器间通信顺畅。 2. **拉取镜像与初始化数据库** 使用官方提供的命令下载最新版本的应用程序包,并按照指引创建初始结构化的存储空间用于保存后续导入的数据集。 3. **加载预训练模型** 根据具体应用场景选择合适的机器学习算法框架作为后台支撑力量,在此基础上加载已经过优化调整过的参数文件以加速新项目的开发周期。 4. **集成第三方API接口** 如果项目中有涉及到外部资源调用的需求,则可通过 RESTful 或 GraphQL 协议轻松对接各类公共服务平台所提供的 API 接口,从而扩展应用的功能边界。 5. **测试验证环节** 利用内置的压力测试工具模拟真实世界的并发访问情况,确保整个系统能够在高负载条件下稳定运行;同时也要注意定期备份重要资料以防意外丢失。 ```bash docker pull deepseek/latest docker run --name=deepseek-db -e POSTGRES_USER=user -e POSTGRES_PASSWORD=password -d postgres:latest ``` #### Ollama 本地部署指南 Ollama 致力于为企业提供一站式的AI驱动型知识管理系统,具备良好的可移植性和灵活性特点。通过简单的几行脚本即可快速搭建起一套基于云原生架构设计的服务集群,满足不同规模企业内部协作交流过程中所产生的多样化诉求。 针对想要自行托管实例的情况而言: - 下载适用于目标操作系统类型的二进制执行文件; - 修改默认配置项中的监听地址端口号等基本信息; - 启动主进程之前先检查依赖关系是否齐全; - 访问浏览器输入指定URL路径查看图形界面版控制面板; - 导入样例工程熟悉基本的操作流程之后再逐步引入实际生产环境里的素材内容进行加工整理。 ```jsonnet { "api": { "listen_addr": ":8080", "max_body_size_mb": 10, ... }, } ``` #### Ragflow 本地部署说明 Ragflow 特别适合那些寻求高级定制选项和技术深度的企业级客户群组,拥有出色的 RAG 引擎及工作流编排能力,可以应对更为复杂多变的任务场景要求[^2]。下面是一份简化后的部署手册摘要: ##### 准备阶段 - 确认硬件设施达标(CPU/GPU内存容量充足) - 获取授权许可密钥激活产品特性权限 - 设置 GitLab CI/CD 流水线自动化持续交付管道 ##### 执行步骤 - 构建基础镜像并推送至私有的 Harbor 私服仓库内待命 - 编写 Helm Chart 文件定义好各微服务之间的关联映射关系图谱 - 应用 YAML 清单描述符启动 K8S Pod 实例集合体形成分布式计算网格布局 - 登录 Web 控制台页面校验各项指标数值是否正常无误 ```shell helm install my-release ./ragflow-chart \ --set image.repository=my.harbor.repo/ragnaroek/ragflow-server \ --set image.tag=v1.0.0 \ -f values.yaml ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

正经教主

有钱捧个钱场,没钱捧个人场👌

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值