ΑA-Conotoxin PIVA ;171439-59-1,CGGNDCTPVNIGCGSC

基本信息

  • 英文名称:ΑA-Conotoxin PIVA

  • 中文名称:目前暂未找到普遍认可的中文名称,可暂译为 “αA - 芋螺毒素 PIVA”

  • 氨基酸序列:半胱氨酸 - 甘氨酸 - 甘氨酸 - 天冬酰胺 - 天冬氨酸 - 半胱氨酸 - 苏氨酸 - 脯氨酸 - 缬氨酸 - 天冬酰胺 - 异亮氨酸 - 甘氨酸 - 半胱氨酸 - 甘氨酸 - 丝氨酸 - 半胱氨酸

  • 单字母序列:CGGNDCTPVNIGCGSC

  • 三字母序列:Cys-Gly-Gly-Asn-Asp-Cys-Thr-Pro-Val-Asn-Ile-Gly-Cys-Gly-Ser-Cys

  • 分子量:1728.81

  • 分子式:C₇₁H₁₀₆N₂₀O₂₄S₄

  • 等电点:未提及相关数据

  • CAS 号:171439-59-1

  • 产品信息来源:楚肽生物

结构信息

αA - 芋螺毒素 PIVA 是一种富含半胱氨酸的小肽,含有 4 个半胱氨酸残基,它们之间可形成两对二硫键,对维持其稳定的三维结构至关重要。这种由二硫键稳定的特殊结构,使得毒素呈现出独特的折叠方式,形成了特定的空间构象,这是其能够特异性结合靶标的结构基础。此外,肽链中的其他氨基酸残基通过氢键、范德华力等相互作用,进一步稳定其整体结构。

作用机理及研究进展

  • 作用机理:αA - 芋螺毒素 PIVA 主要作用于烟碱型乙酰胆碱受体(nAChRs),通过与 nAChRs 上的特定结合位点紧密结合,从而阻断乙酰胆碱与受体的正常结合,干扰神经信号的传递。由于 nAChRs 在神经系统尤其是神经肌肉接头处广泛分布,参与神经冲动的传导和肌肉收缩的调节,αA - 芋螺毒素 PIVA 对 nAChRs 的阻断作用会导致神经肌肉传递受阻,进而引发肌肉松弛等生理效应。

  • 研究进展:在基础研究方面,科学家们深入探究其与不同亚型 nAChRs 的结合特异性和亲和力,发现它对某些特定亚型的 nAChRs 具有较高的选择性,这为开发针对特定 nAChR 亚型的药物提供了潜在的模板。在医学应用研究中,因其能够特异性地调节神经肌肉信号传递,被视为开发新型肌肉松弛剂或治疗某些神经系统疾病(如重症肌无力等与 nAChRs 功能异常相关的疾病)的潜在先导化合物。不过,目前还处于临床前研究阶段,需要进一步研究其在体内的药代动力学、药效学以及安全性等方面的特性。

溶解保存

  • 溶解:一般可先尝试用无菌水溶解,如果不溶,可根据其电荷特性选择合适的溶剂。由于分子中含有多个酸性和碱性氨基酸残基,整体电荷较复杂,可尝试用少量的稀酸(如 10% 乙酸溶液)或稀碱(如 10% 碳酸氢铵溶液)溶解,若仍不溶,可加入少量的 DMSO 助溶。

  • 保存:建议将其保存在 - 20°C 或更低温度下,以防止肽的降解和氧化。对于溶解后的溶液,应尽量避免反复冻融,可将其分装成小份后保存,使用时取出一份,避免剩余部分受到影响。

相关多肽

与 αA - 芋螺毒素 PIVA 结构和功能相关的多肽有多种芋螺毒素,如 α- 芋螺毒素 GI 等。这些芋螺毒素大多作用于 nAChRs,但在氨基酸序列、二硫键连接方式以及对不同 nAChR 亚型的选择性上存在差异。它们在结构上都具有富含半胱氨酸的特征,形成相似的二硫键稳定的结构框架,但细微的序列差异导致它们与 nAChRs 的结合特性和生理效应有所不同。此外,一些人工合成的模拟芋螺毒素结构和功能的多肽也在研究中,通过对天然芋螺毒素的结构改造和优化,以期获得更高效、更安全的药物先导化合物。

相关文献

  • Olivera, B. M., et al. "An unusual class of omega - conotoxin that inhibits N - type calcium channels." Biochemistry, 32.13 (1993): 3355-3359.

  • Terlau, H., et al. "Mapping the binding site for a - conotoxin MII on the muscle - type acetylcholine receptor." Neuron, 11.6 (1993): 1099-1110.

添加图片注释,不超过 140 字(可选)

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值