“ AI的应用场景不断扩展,正在重塑零售行业的运营模式与竞争格局。”
——中国连锁经营协会(CCFA)会长彭建真
在数字化浪潮的推动下,零售行业站在了转型的十字路口。如何精准捕捉顾客需求,优化零售链条的每一个环节,实现企业降本增效,成为了零售行业面临的重大课题。据NVIDIA发布的 2025 年度《零售与快速消费品行业 AI 现状》调研报告显示,89%的零售商已在积极采用或试验AI技术,超过半数的零售商已经将AI视为战略性技术,期待能借此获得市场竞争的独特优势。本文将以AI赋能零售的实际案例为切入点,探讨AI如何催生出"人货场"关系的革命性变革,开启智慧商业新时代。
【沉浸式体验:零售场景中的AI对话】
-
AI+销售数据可视化
-
AI+营销活动进程管理
-
AI+7*24h智能售后
-
AI+智能库存信息管理
【生成式AI重塑零售业:从单点突破到全域智能】
实际上,以上的对话也只是AI在零售行业中应用的冰山一角。在数字化浪潮的推动下,人工智能技术正以惊人的速度重塑着零售行业的方方面面。从商品推荐到客户服务,从库存管理到物流配送,AI的应用不仅提升了零售企业的运营效率,还优化了消费者的购物体验,推动着整个行业的创新与发展。
德勤中国发布的《生成式人工智能零售业全景探索白皮书》中指出,生成式AI正在突破传统技术的边界,其应用场景可划分为前台(面向消费者的业务场景)与后台(内部服务场景)。
source:德勤中国
且AI的应用展现出三大显著特征:
-
在前台场景中,生成式AI正从"被动响应"向"主动创造"跃迁。以某头部商超的"AI导购专员"为例,系统不仅能实时解答顾客咨询,还能通过分析用户历史行为和实时情绪,主动推荐搭配商品套餐。更值得关注的是,其动态知识库可每6小时更新一次潮流趋势,确保推荐内容始终与市场热点同步。这种从"问题解答者"到"需求创造者"的转变,使客户转化率提升了40%。
-
后台应用则呈现"全链路渗透"态势。某生鲜巨头的供应链系统通过多模态AI模型,将天气数据、社交媒体舆情、交通实时信息等异构数据融合分析,使库存周转率优化27%。其生成的补货方案不仅考虑历史销售数据,还能预测突发性事件影响——例如当监测到某城市将举办音乐节时,系统会自动调整周边门店的酒水类目备货量。
-
更值得关注的是前后台协同进化的新范式。某时尚品牌打通了从设计到营销的全链条,AI设计师生成的图稿会同步触发供应链物料测算,同时营销系统即时生成适配各渠道的推广内容。这种"需求感知-产品生成-营销触达"的闭环,使新品上市周期从45天缩短至12天。
德勤在报告中特别强调,中国零售企业需把握三个关键机遇:
-
首先是构建动态知识管理体系,通过RAG技术实现企业知识库的实时进化;
-
其次是发展多模态交互能力,将文本、图像、语音交互深度融入业务场景;
-
最后是建立AI价值评估体系,从客户体验提升、运营成本优化、商业创新三个维度量化技术收益。
正如白皮书结语所言:"这不是一场技术军备竞赛,而是商业思维的重构——那些能让人工智能与商业智慧共振的企业,终将在智能零售时代占据先机。"
【Guru Center:为零售行业打造智能商业中枢】
Guru Center,是R²AIN SUITE推出的面向企业应用的AI中台,基于对零售行业全链条的深度解构,融合生成式AI与知识图谱技术,支持私有化部署及动态知识库优化。
Guru Center AI智能体可以执行各种任务,从简单的自动化任务到复杂的决策支持系统。接受用户自然语言请求,自动拆解任务并在多应用程序间无缝协作。例如,Guru Center 协助门店管理者自动生成销售趋势分析报告,还能实时优化促销策略。更核心的价值在于,Guru Center 可将库存管理、供应商对账等繁琐流程自动化处理,例如智能补货模块通过分析历史销量、商品需求预测等数据,动态调整订货量,显著降低滞销风险。
聚焦零售核心场景的智能化改造
-
知识管理与决策支持:本地知识库整合商品手册、促销政策、供应链协议等文档,支持多版本智能对比与关键信息溯源,确保运营策略始终与最新市场动态同步;
-
全渠道服务优化:AI智能体自动处理线上咨询、退换货审核等高频事务,通过语义理解生成个性化回复,同时联动库存系统实时反馈可售商品状态;
-
动态运营赋能:基于消费者行为数据生成营销话术建议,辅助店员提升转化率,并自动生成门店巡检任务清单,确保运营标准落地。
通过智能优化商品策略、供应链管理及消费者洞察,Guru Center 能帮助零售企业实现从门店运营到后端管理的智能跃迁,真正打通“人-货-场”数据闭环。
参考文献:
【1】NVIDIA. (2025). 2025年零售与快速消费品行业AI现状与趋势 [调研报告]. NVIDIA Corporation.
【2】德勤中国, 中国连锁经营协会. (2024). 生成式人工智能零售业全景探索白皮书. 德勤咨询.