理想低通滤波

理想低通滤波器设计与实验结果分析

滤波器设计

理想低通滤波器:

其中 D(u,v) 为频率点到中心的距离,D0为截止频率。

实验结果分析

  • 滤波效果:

低频保留:平滑图像,去除高频噪声(如边缘细节)。

振铃效应:由于理想滤波器的陡峭截止,会在图像边缘产生伪影(Gibbs现象)。

  • 不同截止频率比较:

D0较小:图像模糊严重(仅保留极低频)。

D0增大:更多细节保留,但振铃效应更明显。

%% 实验要求2:理想低通滤波
clc; clear; close all;

img = imread('cherry.jpg');
if size(img,3)==3
    img = rgb2gray(img);
end

[M,N] = size(img);
f = fft2(double(img));
fshift = fftshift(f);

% 创建理想低通滤波器
D0 = 30; % 截止频率
[u,v] = meshgrid(1:N,1:M);
D = sqrt((u-N/2).^2 + (v-M/2).^2);
H = double(D <= D0);

% 滤波
filtered_fshift = fshift .* H;
filtered_f = ifftshift(filtered_fshift);
filtered_img = real(ifft2(filtered_f));

% 显示结果
figure;
subplot(1,3,1); imshow(img); title('原图像');
subplot(1,3,2); imshow(H); title('低通滤波器(D0=30)');
subplot(1,3,3); imshow(filtered_img,[]); title('滤波后图像');

% 不同截止频率比较
D0_values = [15, 30, 60];
figure;
for i = 1:length(D0_values)
    D0 = D0_values(i);
    H = double(D <= D0);
    filtered_fshift = fshift .* H;
    filtered_img = real(ifft2(ifftshift(filtered_fshift)));
    subplot(1,3,i); imshow(filtered_img,[]); 
    title(['D0=',num2str(D0)]);
end

结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值