以下是针对开发"主要农作物100种生长监测APP"的技术方案,结合Python和C++的优势设计:
```python
# ================== 技术架构 ==================
项目结构
├── core/ # C++核心算法模块
│ ├── GrowthModel.cpp # 作物生长模型
│ ├── SensorProcessor.h # 传感器数据处理
│ └── CMakeLists.txt
├── ai/ # Python AI模块
│ ├── disease_detection.py # 病害识别
│ └── yield_predict.py # 产量预测
├── hardware/ # 硬件接口层
│ ├── serial_reader.py # 串口数据读取
│ └── camera_ctrl.cpp # 摄像头控制
├── app/ # 应用界面
│ ├── main_window.py # PyQt主界面
│ └── map_display.py # 地理信息展示
└── database/ # 农业数据库
├── crop_parameters.db # 作物参数
└── growth_records/ # 生长记录
```
### 一、核心监测模块(C++)
```cpp
// GrowthModel.cpp - 作物生长模型计算
#include <cmath>
extern "C" {
// 环境适宜度计算(温度、湿度、光照)
float calculate_environment_score(float temp, float humidity, float light) {
const float T_opt = 25.0f; // 最适温度
const float H_opt = 60.0f; // 最适湿度
const float L_opt = 10000.0f; // 最佳光照(lux)
float t_score = exp(-pow((temp - T_opt)/5.0, 2));
float h_score = exp(-pow((humidity - H_opt)/15.0, 2));
float l_score = 1.0 - fabs(light - L_opt)/L_opt;
return (t_score + h_score + l_score) / 3.0 * 100.0;
}
// 生长阶段判断(DD: 积温)
int detect_growth_stage(float accumulated_heat, int crop_id) {
// 从数据库加载作物积温阈值
// 示例:水稻阶段划分
if(crop_id == 1) {
if(accumulated_heat < 800) return 1; // 苗期
if(accumulated_heat < 1500) return 2; // 分蘖期
if(accumulated_heat < 2200) return 3; // 抽穗期
return 4; // 成熟期
}
// 其他作物判断逻辑...
}
}
```
### 二、Python接口封装
```python
# core_interface.py
import ctypes
import json
class CropMonitor:
def __init__(self):
self.lib = ctypes.CDLL('./libcrop_monitor.so')
# 定义C++函数接口
self.lib.calculate_environment