基于python,matlab的财务分析,四大能力分析,盈利能力,经营能力,偿债能力,发展能力,财务报表,现金流量表,各项财务比率分析,杜邦分析 __

基于python,matlab的财务分析,四大能力分析,盈利能力,经营能力,偿债能力,发展能力,财务报表,现金流量表,各项财务比率分析,杜邦分析

加粗样式@


进行财务分析时,Python和Matlab都提供了丰富的库和工具来处理和分析财务数据。以下是一些示例代码,分别展示了如何使用Python和Matlab来进行财务比率分析、杜邦分析等。

Python 示例

在Python中,我们可以使用pandas来处理财务报表数据,并利用numpy和自定义函数来计算各种财务比率。

财务比率分析
import pandas as pd
import numpy as np

# 假设我们有一个包含财务数据的DataFrame
data = {
    'NetIncome': [100, 200, 300], # 净利润
    'Revenue': [1000, 2000, 3000], # 营业收入
    'TotalAssets': [5000, 6000, 7000], # 总资产
    'TotalLiabilities': [2000, 2500, 3000], # 总负债
    'ShareholdersEquity': [3000, 3500, 4000], # 股东权益
    'CashFlowFromOperatingActivities': [150, 250, 350] # 经营活动产生的现金流量净额
}

df = pd.DataFrame(data)

# 盈利能力 - 净利率
df['NetProfitMargin'] = df['NetIncome'] / df['Revenue']

# 经营能力 - 总资产周转率
df['AssetTurnover'] = df['Revenue'] / df['TotalAssets']

# 偿债能力 - 资产负债率
df['DebtRatio'] = df['TotalLiabilities'] / df['TotalAssets']

# 发展能力 - 现金流量净额增长率
df['CashFlowGrowthRate'] = df['CashFlowFromOperatingActivities'].pct_change()

print(df)
杜邦分析

杜邦分析是将净资产收益率(ROE)分解为利润率、总资产周转率和财务杠杆三个部分的分析方法。

# 计算杜邦分析所需的数据
df['ROA'] = df['NetIncome'] / df['TotalAssets']
df['EquityMultiplier'] = df['TotalAssets'] / df['ShareholdersEquity']

# ROE = NetProfitMargin * AssetTurnover * EquityMultiplier
df['ROE'] = df['NetProfitMargin'] * df['AssetTurnover'] * df['EquityMultiplier']

print("杜邦分析结果:")
print(df[['ROA', 'EquityMultiplier', 'ROE']])

Matlab 示例

在Matlab中,同样可以进行类似的财务比率分析和杜邦分析。

财务比率分析
% 假设我们有如下向量表示不同年份的财务数据
NetIncome = [100, 200, 300]; % 净利润
Revenue = [1000, 2000, 3000]; % 营业收入
TotalAssets = [5000, 6000, 7000]; % 总资产
TotalLiabilities = [2000, 2500, 3000]; % 总负债
ShareholdersEquity = [3000, 3500, 4000]; % 股东权益
CashFlowFromOperatingActivities = [150, 250, 350]; % 经营活动产生的现金流量净额

% 盈利能力 - 净利率
NetProfitMargin = NetIncome ./ Revenue;

% 经营能力 - 总资产周转率
AssetTurnover = Revenue ./ TotalAssets;

% 偿债能力 - 资产负债率
DebtRatio = TotalLiabilities ./ TotalAssets;

% 发展能力 - 现金流量净额增长率
CashFlowGrowthRate = diff(CashFlowFromOperatingActivities) ./ CashFlowFromOperatingActivities(1:end-1);

disp('财务比率:')
disp(table(NetProfitMargin', AssetTurnover', DebtRatio', CashFlowGrowthRate', 'VariableNames', {'NetProfitMargin', 'AssetTurnover', 'DebtRatio', 'CashFlowGrowthRate'}))
杜邦分析
% 计算杜邦分析所需的数据
ROA = NetIncome ./ TotalAssets;
EquityMultiplier = TotalAssets ./ ShareholdersEquity;

% ROE = NetProfitMargin * AssetTurnover * EquityMultiplier
ROE = (NetIncome ./ Revenue) .* (Revenue ./ TotalAssets) .* EquityMultiplier;

disp('杜邦分析结果:')
disp(table(ROA', EquityMultiplier', ROE', 'VariableNames', {'ROA', 'EquityMultiplier', 'ROE'}))

以上代码展示了如何在Python和Matlab中进行基本的财务比率分析和杜邦分析。实际应用中,您可能需要根据具体的财务报表格式和数据来源调整代码。希望这些示例对您有所帮助!
在这里插入图片描述
根据您的请求,您希望使用Python和Jupyter Notebook来进行财务分析。以下是一个示例代码,展示了如何在Jupyter Notebook中进行财务比率分析和杜邦分析。

Python 示例

首先,确保您已经安装了必要的库:

pip install pandas numpy matplotlib seaborn

然后,在Jupyter Notebook中编写如下代码:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# 假设我们有一个包含财务数据的DataFrame
data = {
    'NetIncome': [100, 200, 300],  # 净利润
    'Revenue': [1000, 2000, 3000],  # 营业收入
    'TotalAssets': [5000, 6000, 7000],  # 总资产
    'TotalLiabilities': [2000, 2500, 3000],  # 总负债
    'ShareholdersEquity': [3000, 3500, 4000],  # 股东权益
    'CashFlowFromOperatingActivities': [150, 250, 350]  # 经营活动产生的现金流量净额
}

df = pd.DataFrame(data)

# 盈利能力 - 净利率
df['NetProfitMargin'] = df['NetIncome'] / df['Revenue']

# 经营能力 - 总资产周转率
df['AssetTurnover'] = df['Revenue'] / df['TotalAssets']

# 偿债能力 - 资产负债率
df['DebtRatio'] = df['TotalLiabilities'] / df['TotalAssets']

# 发展能力 - 现金流量净额增长率
df['CashFlowGrowthRate'] = df['CashFlowFromOperatingActivities'].pct_change()

print(df)

# 杜邦分析
df['ROA'] = df['NetIncome'] / df['TotalAssets']
df['EquityMultiplier'] = df['TotalAssets'] / df['ShareholdersEquity']
df['ROE'] = df['NetProfitMargin'] * df['AssetTurnover'] * df['EquityMultiplier']

print("杜邦分析结果:")
print(df[['ROA', 'EquityMultiplier', 'ROE']])

# 可视化
plt.figure(figsize=(12, 8))

# 盈利能力
plt.subplot(2, 2, 1)
sns.barplot(x=df.index, y='NetProfitMargin', data=df)
plt.title('盈利能力 - 净利率')

# 经营能力
plt.subplot(2, 2, 2)
sns.barplot(x=df.index, y='AssetTurnover', data=df)
plt.title('经营能力 - 总资产周转率')

# 偿债能力
plt.subplot(2, 2, 3)
sns.barplot(x=df.index, y='DebtRatio', data=df)
plt.title('偿债能力 - 资产负债率')

# 发展能力
plt.subplot(2, 2, 4)
sns.lineplot(x=df.index, y='CashFlowGrowthRate', data=df)
plt.title('发展能力 - 现金流量净额增长率')

plt.tight_layout()
plt.show()

解释代码

  1. 导入必要的库:

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    
  2. 创建财务数据的DataFrame:

    data = {
        'NetIncome': [100, 200, 300],
        'Revenue': [1000, 2000, 3000],
        'TotalAssets': [5000, 6000, 7000],
        'TotalLiabilities': [2000, 2500, 3000],
        'ShareholdersEquity': [3000, 3500, 4000],
        'CashFlowFromOperatingActivities': [150, 250, 350]
    }
    df = pd.DataFrame(data)
    
  3. 计算财务比率:

    df['NetProfitMargin'] = df['NetIncome'] / df['Revenue']
    df['AssetTurnover'] = df['Revenue'] / df['TotalAssets']
    df['DebtRatio'] = df['TotalLiabilities'] / df['TotalAssets']
    df['CashFlowGrowthRate'] = df['CashFlowFromOperatingActivities'].pct_change()
    
  4. 杜邦分析:

    df['ROA'] = df['NetIncome'] / df['TotalAssets']
    df['EquityMultiplier'] = df['TotalAssets'] / df['ShareholdersEquity']
    df['ROE'] = df['NetProfitMargin'] * df['AssetTurnover'] * df['EquityMultiplier']
    
  5. 可视化:

    plt.figure(figsize=(12, 8))
    sns.barplot(x=df.index, y='NetProfitMargin', data=df)
    sns.barplot(x=df.index, y='AssetTurnover', data=df)
    sns.barplot(x=df.index, y='DebtRatio', data=df)
    sns.lineplot(x=df.index, y='CashFlowGrowthRate', data=df)
    

希望这些示例对您有所帮助!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值