基于MATLAB柑橘病虫害识别检测系统GUI

基于MATLAB柑橘病虫害识别检测系统GUI

本系统是一款基于MATLAB开发深度学习VGG19模型的柑橘病虫害识别系统,集成了图像处理技术与人工智能分类模型,能够高效、准确地识别柑橘作物中常见的19种病虫害问题。该系统通过对柑橘叶片、果实图像的处理与分析,实现自动化识别和分类,为农业科研、智能种植管理、病虫害监测提供了强有力的技术支持。

系统充分发挥MATLAB在图像处理领域的强大能力,内置中值滤波、二值分割、对比度增强和灰度分割等关键图像处理算法,为后续的特征提取与分类识别提供了清晰且高质量的图像基础。其中,中值滤波算法能够有效去除噪声、平滑图像,尤其适用于去除拍摄过程噪声;二值分割算法将病虫害区域从背景中准确分离,使病变区域更加突出,提升后续识别的准确率;对比度增强技术则对图像整体亮度与色彩信息进行优化调整,使微小的病斑、虫害痕迹更加清晰可见;而灰度分割算法能够自动提取特定灰度范围的目标区域,有效减少复杂背景对识别结果的干扰。

在图像预处理之后,系统利用图像识别算法对图像中的关键特征进行提取,结合深度学习VGG19预训练模型对图像进行多类别识别。识别结果将以直观的文字与图像形式展示,用户能够一目了然地获取识别出的病虫害名称与相应的诊断信息,辅助进行后续处理与防治决策。

系统提供一个简洁直观的图形用户界面(GUI),无需专业编程知识,只需点击几个按钮,即可完成图像的上传、处理与识别全过程。界面中包含图像显示窗口、识别结果输出区域以及多个功能模块,支持用户上传本地图像。

在这里插入图片描述
在这里插入图片描述

以下是一个基于MATLAB的柑橘病虫害识别检测系统的GUI设计和代码实现。该系统允许用户上传柑橘叶片图像,进行预处理、特征提取,并使用简单的分类模型(如SVM)来识别病虫害类型。


1. 功能模块

  • 图像上传:用户可以选择本地图片。
  • 图像预处理:灰度化、二值化等操作。
  • 特征提取:提取颜色、纹理等特征。
  • 分类识别:使用机器学习模型(如SVM)进行分类。
  • 结果显示:显示分类结果和预处理后的图像。

2. GUI界面设计

使用MATLAB的GUIDE工具创建GUI界面,界面布局如下:

  • 按钮
    • “选择图像”:用于上传图像。
    • “开始识别”:启动识别流程。
  • 显示区域
    • 原始图像显示区。
    • 预处理后的图像显示区。
  • 文本框
    • 显示分类结果。

3. 代码实现

主程序代码
function varargout = CitrusDiseaseDetectionGUI(varargin)
% CITRUSDISEASEDETECTIONGUI MATLAB code for CitrusDiseaseDetectionGUI.fig
%      CITRUSDISEASEDETECTIONGUI, by itself, creates a new CITRUSDISEASEDETECTIONGUI or raises the existing
%      singleton*.
%
%      H = CITRUSDISEASEDETECTIONGUI returns the handle to a new CITRUSDISEASEDETECTIONGUI or the handle to
%      the existing singleton*.
%
%      CITRUSDISEASEDETECTIONGUI('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in CITRUSDISEASEDETECTIONGUI.M with the given input arguments.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @CitrusDiseaseDetectionGUI_OpeningFcn, ...
                   'gui_OutputFcn',  @CitrusDiseaseDetectionGUI_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before CitrusDiseaseDetectionGUI is made visible.
function CitrusDiseaseDetectionGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to CitrusDiseaseDetectionGUI (see VARARGIN)

handles.output = hObject;
guidata(hObject, handles);


% --- Outputs from this function are returned to the command line.
function varargout = CitrusDiseaseDetectionGUI_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

varargout{1} = handles.output;


% --- Executes on button press in pushbutton1 (选择图像).
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% 打开文件选择对话框
[filename, pathname] = uigetfile({'*.jpg;*.png;*.bmp','图像文件 (*.jpg, *.png, *.bmp)'}, '选择图像');
if isequal(filename,0) || isequal(pathname,0)
    return;
end

% 加载图像
fullpath = fullfile(pathname, filename);
img = imread(fullpath);

% 显示原始图像
axes(handles.axes1);
imshow(img);
title('原始图像');

% 保存图像到handles结构
handles.img = img;
guidata(hObject, handles);


% --- Executes on button press in pushbutton2 (开始识别).
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% 检查是否已加载图像
if ~isfield(handles, 'img') || isempty(handles.img)
    msgbox('请先选择一张图像!', '错误', 'error');
    return;
end

% 获取图像
img = handles.img;

% 图像预处理
grayImg = rgb2gray(img); % 转为灰度图像
bwImg = imbinarize(grayImg); % 二值化

% 显示预处理后的图像
axes(handles.axes2);
imshow(bwImg);
title('预处理后的图像');

% 特征提取(以简单的统计特征为例)
features.meanIntensity = mean(grayImg(:));
features.stdIntensity = std(grayImg(:));

% 使用简单的规则进行分类(可替换为SVM等模型)
if features.meanIntensity > 100
    result = '健康';
elseif features.meanIntensity > 50
    result = '轻微病害';
else
    result = '严重病害';
end

% 显示分类结果
set(handles.edit1, 'String', result);

% 更新handles结构
guidata(hObject, handles);

4. 运行说明

  1. 将上述代码保存为CitrusDiseaseDetectionGUI.m
  2. 在MATLAB中运行CitrusDiseaseDetectionGUI,打开GUI界面。
  3. 点击“选择图像”按钮上传柑橘叶片图片。
  4. 点击“开始识别”按钮,系统会显示预处理后的图像和分类结果。

5. 扩展与优化

  • 深度学习模型:可以使用卷积神经网络(CNN)替代简单的规则分类。
  • 多类别分类:支持多种柑橘病虫害类型的识别(如黄龙病、溃疡病等)。
  • 数据集训练:收集更多柑橘叶片图像,训练更精确的分类模型(如使用MATLAB的fitcecoctrainNetwork函数)。
  • GUI美化:优化界面布局,添加更多交互功能(如保存结果、显示详细信息等)。

希望这个示例能帮助你完成基于MATLAB的柑橘病虫害识别检测系统设计!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值