从CoT到MCoT!NUS、港中文等发布「多模态思维链」重磅综述:迈向通用人工智能的关键一步

近日,NUS、港中文等知名高校机构联合发布「多模态思维链」重磅综述,深度解析了280篇文献。当多模态数据与复杂任务处理需求相遇,多模态思维链(MCoT)推理技术应运而生,为人工智能发展注入新活力。

在机器人领域,以往多机器人协作导航存在集中式规划负担重、分散式规划通信成本高的问题。如今,MCoCoNav框架借助多模态思维链和视觉语言模型,让机器人能依据全局语义地图协作探索,提升导航效率和成功率,为室内服务机器人导航带来新突破 。在医疗、教育、自动驾驶等众多领域,MCoT同样表现出色。医疗场景中助力分析影像和诊断决策;教育领域用于智能辅导和个性化学习;自动驾驶时帮助车辆理解复杂路况和决策。它解锁了各领域复杂任务处理的新可能。

当前,MCoT研究呈现出蓬勃发展的态势。研究人员从改进推理机制,如设计更高效的提示策略、优化思维结构,到拓展应用场景,尝试在更多复杂领域发挥作用。未来,**MCoT有望在多模态数据融合、模型效率提升等方面取得更大突破,进一步推动人工智能向通用人工智能迈进。 **

我们精心挑选了13篇多模态思维链的相关论文,为大家提供论文写作思路。

点击【AI十八式】的主页,获取更多优质资源!

一、Multimodal Chain-of-Thought Reasoning:A Comprehensive Survey

Examples of MCoT applications in various modalities and tasks

Examples of MCoT applications in various modalities and tasks

1.研究方法

MCoT reasoning methods under different rationale construction perspectives

MCoT reasoning methods under different rationale construction perspectives

多模态思维链(MCoT)推理通过将思维链推理优势拓展到多模态情境,针对不同模态数据设计相应的处理策略。具体通过构建基于提示、计划和学习的推理机制,结合结构化推理、信息增强、多模态理据等方法,实现复杂任务的多步推理,并在多个领域进行应用和验证。

  1. 基于提示的方法:精心设计提示,在零样本或少样本设置下引导模型生成理据,常集成专家工具,提升对多模态数据的理解与推理。

  2. 基于计划的方法:让模型在推理过程中动态探索和优化思维,通过不同的搜索算法和决策机制,遍历多种推理路径,增强适应性和问题解决深度。

  3. 基于学习的方法:在训练或微调过程中嵌入理据构建,使模型学习推理技能,结合多模态输入提升推理能力。

2.多模态思维链创新点

Performance comparison of MLLMs from various institutions across four benchmarks:
MMMU (Val), MathVista (Mini), Math-Vision, and EMMA (Mini)

Performance comparison of MLLMs from various institutions across four benchmarks: MMMU (Val), MathVista (Mini), Math-Vision, and EMMA (Mini)

  1. 拓展推理模态:将思维链推理从文本拓展到图像、视频、音频、3D、表格图表等多种模态,解决不同模态复杂任务,如在图像领域用于视觉问答、目标检测,在医疗领域辅助医疗任务判断等。

  2. 创新推理范式:提出多种新颖的推理范式,如树状、图状和超图状思维结构,突破线性推理局限,支持分支探索、聚合优化和高阶关联推理,提高推理效率和准确性。

  3. 多视角优化推理:从多个视角对MCoT推理进行优化,如在结构上采用异步模态建模、定义程序阶段和自主程序阶段,增强推理过程的可控性和可解释性;通过信息增强整合专家工具和知识,提升推理质量。

  4. 推动应用发展:在多个重要领域取得显著应用成果,如在具身AI中增强机器人能力,在自动驾驶中提升决策和适应性,在多模态生成中克服数据驱动的局限,实现精确创新的输出。

论文链接:https://arxiv.org/pdf/2503.12605

二、Enhancing Multi-Robot Semantic Navigation Through Multimodal Chain-of-Thought Score Collaboration

Enhancing Multi-Robot Semantic Navigation Through Multimodal
Chain-of-Thought Score Collaboration

Enhancing Multi-Robot Semantic Navigation Through Multimodal Chain-of-Thought Score Collaboration

1.研究方法

Components of MCoCoNav

Components of MCoCoNav

该论文提出多模态思维链协同导航(MCoCoNav)框架,用于解决多机器人语义导航任务。先通过感知模块利用多模态思维链评估场景探索价值得到探索分数,判断模块结合全局语义地图等信息给出判断分数,二者综合形成水平视野分数和历史分数,决策模块依此选择长期导航目标,最后经逻辑分析和局部策略规划机器人行动。

2.论文创新点

Workflow of cross-image multimodal CoT

Workflow of cross-image multimodal CoT

  1. 创新规划框架:设计了适用于多机器人语义导航任务的规划框架,借助局部小规模视觉语言模型(VLMs)引导多机器人在未知环境中高效探索与决策,突破了传统集中式和分散式规划策略的局限。

  2. 促进信息共享:采用跨图像多模态思维链,帮助机器人理解不同图像的高级信息,实现机器人间低成本的语义信息共享,增强了机器人对环境的理解和导航决策的可靠性。

  3. 性能表现优异:在HM3D v0.2和MP3D数据集上的实验表明,MCoCoNav在导航成功率(SR)和路径长度加权成功率(SPL)等指标上优于其他多机器人导航方法,且完全零样本、可低成本本地部署。

论文链接:https://arxiv.org/pdf/2412.18292

 点击【AI十八式】的主页,获取更多优质资源!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值