在时间序列预测的领域,Mamba架构正不断突破技术瓶颈,为精确预测提供了新的方向!如何更有效地捕捉长期依赖关系并提升预测的准确性与稳定性?本期推荐的两篇前沿论文展示了Mamba+时间序列的最新创新,解锁了时间序列建模的新潜力!
🔥 DTMamba:双子Mamba的协同演绎
DTMamba(Dual Twin Mamba)通过引入双TMamba模块,配合RevIN归一化、通道独立建模和残差连接,在处理长序列时表现出色,并有效避免了梯度消失问题。实验结果表明,DTMamba在多个基准数据集上优于现有的SOTA,成为了新一代时间序列预测的核心工具!
⚡ Bi-Mamba+:双向Mamba的智能进化
Bi-Mamba+在Mamba架构的基础上进行了创新升级,采用双向建模结构,增强了历史信息的保存和长短期依赖的捕捉能力。通过引入遗忘门和SRA决定器,模型能够智能选择最适合的数据建模策略,进一步提升预测精度和鲁棒性。
🚀 想了解Mamba+架构如何重新定义时间序列预测?立即阅读这两篇论文,掌握最前沿的建模技术!想要更多该方向论文和代码的同学记得多多关注我们,我附上了10篇相关论文和代码链接,等待大家探索!!
【论文1】DTMamba : Dual Twin Mamba for Time Series Forecasting
Overall structure of DTMamba.
1.研究方法
Details of TMamba Block
论文提出DTMamba,即输入数据先经 RevIN 归一化和 Channel Independence 层处理,再通过两个 TMamba 块捕捉长期依赖关系,利用残差网络防止梯度消失,最后经投影层及反向操作得到预测结果。
2.论文创新点
The prediction results of DTMamba and the benchmark models for various time series forecasting
-
模型结构:提出DTMamba模型,含两个TMamba块,有效捕捉时间序列数据中的长期依赖关系。
-
性能优势:实验证明DTMamba性能优于先前的SOTA模型。
-
消融实验:通过消融实验验证了Channel Independence和残差网络在模型中的有效性。
-
敏感性实验:进行参数敏感性实验,展示了DTMamba对不同参数设置的鲁棒性。
-
扩展性实验:开展实验验证了DTMamba的扩展性。
论文链接:https://arxiv.org/pdf/2405.07022
【论文2】Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting
The architecture of Bi-Mamba+
1.研究方法
The architecture of (a) Bi-Mamba+ encoder and (b) Mamba+ block.
该论文提出 Bi - Mamba + 模型用于长短期时间序列预测(LTSF)。设计 Mamba + 块,通过添加遗忘门互补结合新特征与历史特征;采用双向结构对多元时间序列(MTS)数据建模;利用基于 Spearman 系数相关性的系列关系感知(SRA)决定器,自动选择通道独立或通道混合的标记化策略。
2.论文创新点
创新点
-
改进模型结构:设计Mamba+块,添加遗忘门,增强模型保存长期历史信息的能力,提升预测准确性。
-
双向建模:提出双向Mamba+结构,从正向和反向对MTS数据建模,更好捕捉时间序列元素间的相互作用,增强模型鲁棒性。
-
自适应策略选择:设计SRA决定器,依据数据特征自动选择合适的标记化策略,更精准地捕捉不同数据集的序列内和序列间依赖关系。