- 博客(56)
- 收藏
- 关注
原创 模型无痛涨点!因果机器学习疯狂收割顶会
《因果机器学习前沿进展精选综述》摘要:本文聚焦2024年因果机器学习(CausalML)领域的最新突破,精选20篇高水平论文,系统梳理了该交叉学科的理论创新与应用实践。研究显示,当前发展呈现三大趋势:1)动态因果建模技术(如CAST框架)突破传统静态分析局限,实现连续时间维度的治疗效果评估;2)多层次特征融合方法(如WHAR任务中的分层交互机制)显著提升模型解释性;3)面向OOD场景的软因果学习(如CauEMO系统)通过知识增强的环境生成器,有效解决分子属性预测的泛化难题。这些创新在医疗、金融等领域展现出重
2025-06-06 10:59:25
698
原创 多模态融合:当前及未来发论文的热门方向!
多模态融合技术研究新进展:两篇创新论文解析 两篇前沿论文展示了多模态融合技术的最新突破:1)MulFS-CAP框架首次实现单阶段非配准红外-可见光图像融合,通过可学习模态词典补偿特征差异,构建跨模态对齐感知机制;2)DeepMSI-MER提出基于对比学习的多模态情感识别方法,创新性地采用视觉序列压缩技术减少冗余信息,改进对比学习特征融合。这些研究解决了模态异构性对齐、冗余信息抑制等关键挑战,在军事侦察、人机交互等领域具有重要应用价值。 获取方式:点击【AI十八式】主页,获取完整20篇前沿论文资源。
2025-06-05 11:17:37
827
原创 小波变化联手transformer,这个思路拿下顶会顶刊易如反掌!
Transformer架构一直是各大顶会的研究热点,无论是结构创新还是与其他技术的融合,都展现出巨大潜力。像ECCV 2024中一篇高质量论文便将Transformer与小波变换相结合,提出的新架构SWformer在捕捉空间频率模式方面表现出色,显著优于现有SNN模型。这种融合策略之所以有效,得益于小波变换的多尺度分析能力,使Transformer在处理图像或信号时既能捕捉细节变化,又能把握全局上下文,实现效率与精度的平衡。
2025-06-04 11:24:51
1099
原创 掌握高效特征提取利器!“注意力+多尺度卷积”组合模型助你领跑科研前沿,冲击Nature!
《计算机视觉前沿:多尺度卷积与注意力机制融合研究》 本文摘要聚焦2024-2025年计算机视觉领域的两项重要研究:DMFourLLIE低光照增强框架和MAN超分辨率网络。核心突破在于创新性地融合多尺度卷积与注意力机制,DMFourLLIE通过双阶段傅里叶域处理结合红外引导相位增强,实现亮度与纹理的精准恢复;MAN则利用多尺度大核注意力模块,在超分任务中高效捕捉长距离依赖。两项研究均采用多分支架构设计,分别针对幅度/相位联合优化和空间上下文聚合,显著提升了模型性能。实验证明,这类方法在PSNR、SSIM等指标
2025-06-03 12:09:24
722
原创 CVPR 2025 | 仅有9行代码!何恺明 & LeCun 提出无归一化层的极简 Transformer
Transformer架构优化取得突破:何恺明与Yann LeCun新研究显示,仅需9行代码引入动态双曲正切机制(DyT),即可完全替代归一化层,使Transformer训练更高效,推理速度提升7.8%。该成果挑战了归一化层不可或缺的传统认知,揭示了Transformer仍有巨大改进空间。另一重要进展FlashAttention通过优化内存访问,实现注意力计算IO效率最优,支持64K长序列处理,训练速度提升3倍。这两项突破性工作表明,Transformer结构层面的创新仍是研究热点。更多Transforme
2025-05-28 11:18:27
808
原创 涨点神器来了!Nature子刊新方法,特征选择性能效率提升98%
2025年AI领域特征选择技术研究取得重要突破。Nature子刊提出的bGGO方法在准确率上超越传统SOTA,FSFC技术实现了98%的效率提升。研究者针对高维数据开发了创新算法:FreqFusion方法通过频域技术增强特征融合质量,DAL算法则显著提升了计算效率。这些技术在密集图像预测和功能数据分类等任务中展现出卓越性能,不仅解决了类别不一致和边界位移问题,还提高了模型泛化能力。相关论文已发表于arXiv,为AI模型优化提供了新的解决方案。
2025-05-27 14:14:47
1031
原创 重大突破!港大&字节:DanceGRPO,首个统一视觉生成的强化学习框架发布!
本文介绍了 DanceGRPO,这是首个将群体相对策略优化(GRPO)适配到视觉生成范式的统一框架,实现了跨两种生成范式(扩散模型和整流流)、三项任务(文本到图像、文本到视频、图像到视频)、四种基础模型(Stable Diffusion、HunyuanVideo、FLUX、SkyReels-I2V)和五种奖励模型(图像 / 视频美学、文本 - 图像对齐、视频运动质量和二元奖励)的单一强化学习算法。DanceGRPO 是首个能够在不同生成范式、任务、基础模型和奖励模型之间无缝适配的基于 RL 的统一框架。
2025-05-26 11:42:03
748
原创 注意力机制写论文创新点不够用了?试试搭配小波变换把论文发上了Nature!
小波变换与注意力机制的结合在信号与图像处理领域展现出显著优势。小波变换提供多尺度分析能力,而注意力机制则增强模型对关键信息的感知力。这种融合在图像分割、目标检测、语音识别及时间序列分析等任务中表现出色。例如,在齿轮箱故障诊断中,小波变换用于信号预处理,结合轻量级通道注意力机制,提升了模型的鲁棒性和适应性。在飞行轨迹预测中,小波变换与编码器-解码器神经网络架构结合,通过多尺度分解捕捉全局趋势与局部细节,显著提高了预测精度。这些研究不仅验证了结合方法的有效性,还推动了相关领域的创新研究。
2025-05-23 12:02:33
906
原创 审稿人:你可以用交叉注意力做特征融合啊!
交叉注意力机制在深度学习中展现出显著优势,尤其在多模态融合与特征交互任务中表现突出。与自注意力机制不同,交叉注意力通过引导两个不同序列之间的信息交互,实现更高效的信息对齐与融合,广泛应用于机器翻译、图像描述生成、跨模态检索等领域。本文整理了8篇交叉注意力相关论文,涵盖多种应用场景与网络设计思路,为研究者提供创新灵感。其中,论文1提出基于交叉注意力机制的EEG情感识别新方法FCAnet,通过双分支特征提取模块和交叉注意力特征融合网络,显著提升情感分类准确率。论文2则提出基于互交叉注意力机制的EEG情感识别方法
2025-05-22 14:10:50
1010
1
原创 特征融合已经烂大街了?特征融合做好了仍然能发顶会顶刊!
2025年了,都说做特征融合已经做的烂大街了,但在多模态数据日益丰富的今天,如何高效、精准地进行特征融合,依然是学术界和工业界关注的热点与难点。信息采集技术的不断进步,使得数据来源更加多样,模态维度持续上升,这对特征融合方法的鲁棒性、泛化能力提出了更高的要求。在图像识别、自然语言处理、医学影像分析等多个交叉领域中,优秀的特征融合策略仍是提升模型性能的关键所在。为帮助大家在科研道路上实现突破,我精心整理了10篇关于特征融合的高质量论文,涵盖经典方法与最新研究成果,旨在为大家提供创新思路与技术支持。
2025-05-21 11:42:17
1046
原创 RL+Transformer杀疯了!新架构刷爆SOTA,CTSAC高效涨点狂揽 ICRA 2025!
扩散模型在“无痛涨点”方面取得新突破,重构效率提升3倍,抗微调水印能力显著增强。强化学习(RL)与Transformer架构的融合成为人工智能领域的前沿研究方向,结合了RL的动态决策能力和Transformer的全局依赖捕捉优势,为复杂任务下的智能体行为优化提供了新范式。这一技术被视为通往通用人工智能(AGI)的重要路径,尤其在自动驾驶、医疗诊断、金融策略等领域展现出巨大应用潜力。本文精选了8篇“RL+Transformer”方向的最新研究成果,涵盖顶级会议论文及开源代码资源,供研究者参考学习。
2025-05-20 10:57:32
927
原创 全局注意力+位置注意力强强联手,学会了就是发文好帮手!
注意力机制在人工智能领域扮演着关键角色,特别是在处理复杂信息时。全局注意力和位置注意力的结合,使得模型能够在多尺度上理解信息,既把握整体结构,又能洞察局部变化,从而显著提升模型的表现力与泛化能力。本文精选了9篇关于全局注意力与位置注意力融合的论文,涵盖了最新研究成果与应用案例,旨在帮助读者快速掌握该方向的技术脉络,并在论文选题与创新中脱颖而出。其中,PGL-SUM模型通过结合全局多头注意力和局部多头注意力机制,有效捕捉视频中的长距离依赖和局部上下文信息,提升了视频摘要的时序连贯性。DAT++模型则通过可变形
2025-05-19 11:49:03
1088
原创 顶会密码在此!13篇贝叶斯论文+代码公开,帮你搞定「算法创新+架构设计」双刚需!
贝叶斯推断通过结合先验知识与新数据更新对未知参数的理解,广泛应用于机器学习中的模型选择与参数估计,提升算法性能和泛化能力。其在图像识别、自然语言处理等领域发挥重要作用,并与深度学习等前沿技术深度融合,推动人工智能发展。贝叶斯方法在复杂系统建模、不确定性量化等方面持续创新,成为多学科交叉研究的关键力量。本文整理了13篇贝叶斯推断领域的最新论文及配套代码,涵盖算法创新、架构设计与跨学科应用案例,供同行参考。其中,论文1通过贝叶斯分析方法结合核物理实验与天体物理观测,联合限制核对称能参数;论文2提出基于Trans
2025-05-16 11:41:23
823
原创 图神经网络(GNN)怎么会过时呢!GNN+Transformer可拿下顶会!模型性能飞起
图神经网络(GNN)在处理非欧结构数据方面表现出色,广泛应用于社交网络、推荐系统等领域。然而,传统GNN主要依赖局部邻域信息聚合,难以捕捉全局信息,限制了其在复杂任务中的表现。近年来,研究者提出了多种创新思路,如将GNN与Transformer结合,引入自注意力机制以扩大感受野,或通过拓扑结构增强、层次化聚合等方式提升模型表达能力。这些方法为GNN性能的进一步提升提供了新的可能。本文整理了10篇关于GNN模型改进的前沿论文,涵盖多种创新思路与技术方案,旨在帮助读者深入理解当前GNN的研究趋势,并为开展相关课
2025-05-15 11:39:23
1092
原创 CVPR 2025新宠:即插即用扩散模型,不用重训模型,直接涨点!
扩散模型在图像生成、目标检测等领域展现出强大潜力,尤其在自动驾驶和计算机视觉应用中,精确、低噪声的数据表示需求推动了即插即用扩散模型的发展。传统模型在处理多传感器融合或含噪鸟瞰图(BEV)数据时面临挑战,如特征差异大、噪声干扰等。即插即用扩散模型通过创新架构设计,灵活嵌入现有模型,提升去噪与特征融合能力,显著提高了BEV地图分割与3D目标检测的精度,并增强了对传感器异常的鲁棒性。相关研究如BEVDiffuser和DifFUSER,通过特定算法和去噪扩散过程,有效解决了BEV表示噪声和多模态特征融合问题,展示
2025-05-14 11:41:22
1651
原创 涨点利器!交叉注意力与特征融合的强强联手,为何频登顶会?
交叉注意力机制在深度学习中扮演着越来越重要的角色,特别是在特征融合和多模态任务中表现出色。本文介绍了两种基于交叉注意力的创新模型:CrossViT和CAT。CrossViT通过双分支Transformer架构,结合全局与局部信息的多尺度特征融合,显著提升了图像分类的精度。其高效的交叉注意力模块通过线性计算复杂度实现了跨分支信息互补,同时保持了模型的轻量化和性能平衡。CAT模型则通过局部与全局注意力的交替使用,优化了计算效率,并结合了卷积神经网络和Transformer的优点,构建了一个通用的分层骨干网络,支
2025-05-13 12:12:34
861
原创 登顶Nature!2025年必火的发文方向:因果机器学习
因果机器学习结合了传统因果推断与机器学习的优势,通过将因果逻辑嵌入数据驱动模型,有效弥补了传统方法的局限性,被视为突破当前AI瓶颈的关键路径。该领域不仅具备深厚的理论潜力,还展现出广泛的应用前景,持续受到学术界的高度关注。2025年的研究热点可聚焦于动态建模、高维数据处理、无监督学习及跨领域迁移等方向,例如结合深度学习与稀疏因果图,探索轻量化混杂因子控制方法等,既具创新性又贴近实际需求。建议研究者密切关注顶会顶刊最新成果,并结合医疗、金融等具体场景深化研究,提升论文的影响力与落地价值。
2025-05-12 15:06:18
3238
原创 顶刊大热门:强化学习+Transformer,这泼天的高分思路被我接住啦!!
基于Transformer的强化学习(TRL)结合了Transformer模型的强大序列处理能力和强化学习的决策优化框架,显著提升了智能体的学习与适应能力,广泛应用于自动驾驶、机器人控制等领域。本文分享了两篇TRL代表性成果:第一篇结合扩散模型与Transformer,优化了启动子合成及强度预测,展示了模型在合成生物学中的性能优势;第二篇提出了基于随机Transformer的世界模型(STORM),在Atari100k基准测试中显著提高了训练效率和性能表现。这些研究为复杂环境下的决策问题提供了新思路,推动了
2025-05-09 11:33:48
1014
原创 入选AAAI 2025!多模态医学图像融合新突破!
随着人工智能和计算机技术的飞速发展,多模态医学图像处理应运而生。它整合多种医学影像模态的信息,能为医生提供更丰富、全面且准确的诊断依据。通过融合不同模态影像的优势,该技术可显著提升疾病早期诊断的准确性,帮助医生更清晰地观察病变特征、位置和范围,进而制定更具针对性的治疗方案。当下,多模态医学图像处理领域应用极为广泛,其中包含诸多细分研究方向,像多模态医学图像分割、分类、合成、融合以及特征提取等,都是该领域的主流研究点。
2025-05-08 11:22:10
999
原创 只用注意力机制发文没有创新点,小波变换助力文章登顶nature!
小波变换作为一种高效的信号分析工具,擅长捕捉信号的局部特征与多尺度信息,在处理非平稳信号方面具有显著优势。然而,在某些复杂场景下,它可能难以有效识别数据中的关键区域或重要模式。将注意力机制引入小波分析框架,能够弥补这一不足。注意力机制赋予模型动态识别和聚焦关键特征的能力,使系统在面对复杂数据时更具灵活性与解释性。通过融合小波变换的多分辨率分析能力和注意力机制的选择性聚焦特性,可以更全面地挖掘数据中蕴含的深层信息。
2025-05-07 11:14:24
804
原创 紧急补课!12篇前沿顶刊论文解锁预训练GNN的最新研究趋势与应用!
预训练GNN借鉴了自然语言处理和计算机视觉领域中预训练模型的成功经验,旨在通过在大规模无标签图数据上进行预训练,学习到通用的图结构表示和特征提取能力。这些预训练模型就像是掌握了“基础知识”的学生,在面对特定的下游任务时,只需进行少量的微调,就能快速适应并展现出优异的性能。通过预训练,GNN可以更有效地捕捉图中的节点关系、拓扑结构以及各种隐藏的特征模式,极大地提升了模型的泛化能力和学习效率,为解决实际应用中的复杂图分析问题提供了有力支持。
2025-05-06 11:31:01
765
原创 多尺度注意力=顶刊密码!Nature中科院一区如探囊取物!
今天要为大家分享一个备受瞩目的创新方向——多尺度注意力机制。凭借其显著的性能提升和强大的启发性,这一技术在学术界迅速走红,成为研究热点。在目标检测领域,多尺度特征融合技术的重要性不言而喻。通过将浅层网络中丰富的细节信息与深层网络中语义更强的特征相结合,模型能够更精准地捕捉小目标、遮挡目标等复杂场景,从而大幅提升检测效果。同样,在医学影像分割任务中,多尺度特征融合也展现出巨大潜力。它能够有效应对病灶区域形态多样性和边界模糊性的问题,显著提高分割精度,为医疗诊断提供更可靠的支持。
2025-04-30 11:30:57
1013
原创 YYDS!多模态特征融合!小白也能轻松搞定高区论文!
MulFS-CAP框架:提出了一种名为MulFS-CAP的单阶段融合框架,将非配准红外-可见光图像的配准和融合任务相结合。该框架利用共享浅层特征编码器,在单阶段中合并非配准的红外-可见光图像,避免了传统两阶段方法中配准和融合任务独立训练导致的性能欠佳问题。可学习模态词典:为解决特征提取在配准和融合中的冲突,引入可学习模态词典来增强单模态特征。模态词典为单一模态图像的特征提供补偿信息,使其包含其他模态的相关信息,从而减少红外和可见光图像特征间的模态差异,增强特征的表达能力,实现跨模态特征的一致性。
2025-04-29 11:28:39
1012
原创 Transformer双王炸!TRA‘长度无限’内存省40倍
Threshold Relative Attention(TRA)机制选择性稀疏(Selective Sparsity):通过设定阈值,完全屏蔽不相关的键,从而减少噪声干扰。具体实现是通过ReLU函数对语义相关性矩阵进行阈值处理,生成屏蔽矩阵。上下文相关的相对距离(Contextualised Relative Distance):仅在相关的键之间计算相对距离,使得位置信息能够与语义内容协同工作。通过布尔掩码和累积和操作生成上下文相关的距离矩阵。遗忘门(Forget Gate)
2025-04-28 12:00:03
763
原创 时空特征如何融合?LSTM+Resnet有奇效,SOTA方案预测准确率超91%
LSTM有着不错的时序信息提取能力,ResNet有着不错的空间特征信息提取能力。如果现在有时空特征融合的创新需求,我们是否能将LSTM和ResNet两者的优点融合起来呢?随着这个思路下去,LSTM + ResNet混合模型横空出世,在各个需要时空特征融合的交叉领域夺得SOTA。比如一种基于监督对比学习与混合神经网络架构的癫痫发作预测新方法。该方法创新性地融合了ResNet特征提取器与LSTM时序建模模块,在CHB-MIT标准数据集上取得了突破性表现。
2025-04-27 11:29:55
1155
原创 频域+注意力双剑合璧,在ICLR25上杀疯了!提供魔改新思路!
频谱层(Spectral Layer)使用快速傅里叶变换(FFT)将图像从物理空间转换到频谱空间。通过可学习的权重参数对不同频率成分进行加权,从而捕捉图像的局部频率特征。使用逆快速傅里叶变换(IFFT)将频谱空间的特征转换回物理空间。频谱层包括层归一化(Layer Normalization)和多层感知器(MLP)块,用于通道混合。注意力层(Attention Layer)使用标准的多头自注意力(Multi-Head Self-Attention, MSA)机制,用于捕捉全局语义信息。
2025-04-25 11:21:40
1437
原创 CVPR 2025 | 遥感图像目标检测最新论文曝光,每一篇都值得深扒,有想法的速冲!!!
在遥感信息处理领域,始终是等顶级学术平台的研究焦点,在灾害监测、军事侦察等关键领域发挥着重要作用。近年来,随着深度学习技术的不断革新,该领域涌现出一系列突破性成果。SuperYOLO创新性地融合光学、SAR等多模态数据,构建高分辨率检测框架,不仅大幅提升了检测精度,还将模型参数量锐减至原来的1/18,有效克服了传统模型计算复杂、漏检率高的难题。SOAR算法则巧妙结合Mamba与YOLOv9,利用长序列建模能力精准捕捉微小目标的长距离依赖关系,在精度与效率上均达到行业领先水平。
2025-04-24 11:26:56
2833
原创 RAG再登ACL!微软GraphRAG「知识图谱索引」+人大RichRAG「子意图拆解」:效率起飞
子方面探索器:利用大型语言模型(LLM)识别查询的潜在子方面,为后续处理提供明确方向。多方面检索器:根据子方面检索相关文档,构建全面的候选文档池。生成式列表排名器:从候选池中选出最相关文档,生成全局最优排名列表供生成器使用。排名器基于编码器-解码器结构,通过监督微调和强化学习优化,确保输出与生成器偏好一致。
2025-04-23 11:52:41
698
原创 2025年了,图神经网络(GNN)方向是否仍然适合发表论文?
2025年了,方向是否仍然适合发表论文?答案当然是肯定的。图神经网络在处理非欧几里得空间数据和复杂特征方面展现了显著的优势,并已成为深度学习领域的研究热点。无论是在学术界还是工业界,GNN都有着广泛的应用场景和研究价值。此外,图神经网络与计算机视觉(CV)和自然语言处理(NLP)等领域的交叉融合,使其成为一个的创新点,因此仍然是一个非常适合发论文的研究方向。然而,要在这一领域找到创新点并取得突破,我们需要,探索一些尚未被充分挖掘的方向和技术挑战。
2025-04-22 11:29:17
2545
原创 直接抄他的代码就是最好的学习方法!
我整理了一份超全面的人工智能学习仓库,里面有超详细的学习线路,还有各大方向的顶会顶刊以及开源代码,AI 领域那些热门方向基本都被一网打尽了!我在GitHub发现了一个大神,他用Pytorch打造了超多深度学习模型,他的代码简洁优美就像一件精美的艺术品,咱们可以直接把他的代码抄下来跑一跑,然后像剖析 PPT 模板那样,去仔细琢磨每行代码啥意思。搞清楚每部分代码的作用以及整个代码框架这过程非常的有趣不过,有几个小要点得注意,别光盯着配置数据集,一定要去看看项目的文档和注释,这能帮咱们更好地理解代码背后的逻辑。
2025-04-21 14:14:15
368
原创 李飞飞团队新作WorldScore:“世界生成”能力迎来统一评测,3D/4D/视频模型同台PK
从古老神话中对世界起源的幻想,到如今科学家们在实验室里对虚拟世界的构建,人类探索世界生成奥秘的脚步从未停歇。如今,随着人工智能和计算机图形学的深度融合,我们已站在一个全新的起点,能够以前所未有的精度和效率去创造、模拟各类世界。这一领域的突破不仅能让我们打造出更为逼真的虚拟游戏世界、沉浸式的影视场景,还在建筑设计、城市规划、工业模拟等现实应用场景中发挥着巨大作用,帮助人们提前预见方案效果,节省成本与时间。
2025-04-17 11:42:23
1271
原创 代码可复现 | 2024 时间序列顶会研究全览!
最后,将预训练模型在多个下游任务中进行微调,如长短期预测、分类、异常检测和插补等,以适应不同的时间序列分析需求。:创新地引入粗到细发现(C2FD)技术,先对时间序列进行粗分组,大幅减少初始阶段优化的参数数量,再逐步细分,利用前期学习结果作为后续优化的初始猜测,有效解决高维数据下因果图过大难以学习的问题,提升因果发现效率和准确性。:在模型设计中明确考虑缺失值,通过在两个核心模块中注入偏差来处理不同的缺失模式,打破了传统方法中预测与插补分离的局限,减少误差积累,提升模型在缺失值场景下的预测能力。
2025-04-16 11:47:03
902
原创 从CoT到MCoT!NUS、港中文等发布「多模态思维链」重磅综述:迈向通用人工智能的关键一步
近日,NUS、港中文等知名高校机构联合发布重磅综述,深度解析了280篇文献。当多模态数据与复杂任务处理需求相遇,多模态思维链(MCoT)推理技术应运而生,为人工智能发展注入新活力。在机器人领域,以往多机器人协作导航存在集中式规划负担重、分散式规划通信成本高的问题。如今,MCoCoNav框架借助多模态思维链和视觉语言模型,让机器人能依据全局语义地图协作探索,提升导航效率和成功率,为室内服务机器人导航带来新突破。在医疗、教育、自动驾驶等众多领域,MCoT同样表现出色。当前,MCoT研究呈现出蓬勃发展的态势。
2025-04-15 11:17:17
1009
原创 卷积神经网络还没有凉!可变形卷积网络最新成果拿下 CVPR 2024!
卷积神经网络(CNN)提出了这么久,针对于CNN的改进还能拿下顶会吗?DCNv4在继承对前几版本DCN对卷积核改进的成果外,针对于DCN算子的计算速度做出了更多改进,成功拿下CVPR2024。DCN相较于传统CNN的核心优势在于其动态适应性和灵活性。传统CNN的卷积核限制了其对目标的建模能力,而DCN通过引入可学习的偏移量,使得卷积核能够根据输入内容动态调整。我整理了各版本可变形卷积网络(v1 - v4)的论文将帮助大家深入了解DCN。
2025-04-14 11:36:14
939
原创 KDD 2025 顶会最新力作,多变量时间序列预测登顶!
在多变量时间序列预测领域,如何高效捕捉时间分布变化和通道间复杂关系是两大核心挑战。传统方法往往难以同时处理时间模式的异质性和通道间的噪声影响。近期,基于时频结合的方法在这一领域取得了显著进展。本文总结了两篇创新性论文,分别从时间-通道双重聚类和多尺度频域掩蔽的角度出发,提出了DUET和MMFNet两种模型,为多变量时间序列预测提供了新的解决方案。为帮助想发论文的同学,我挑选了5篇最新的多时间序列预测的paper,把创新思路简单提炼了一下,方便大家找灵感。
2025-04-11 16:16:49
1489
1
原创 准确率近100%!注意力机制+多尺度卷积横扫SOTA!
多尺度卷积通过并行卷积核组与特征金字塔架构,可同步捕获微米级纹理与宏观结构变化,具有层级化的特征抽象能力。而注意力机制实现了噪声抑制与关键信号聚焦的精准平衡,可以作为高维特征空间的动态信息过滤器。当前,许多研究正致力于二者的协同创新。多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。例如新型CNN架构MPARN,通过引入注意力机制,实现了最高99.49%的故障诊断准确率。
2025-04-10 11:41:51
904
原创 具身智能顶会大爆发!李飞飞新作斩获最佳论文,这波操作太秀了!
基础模型(Foundation Model, FM):用于高级认知任务,如指令理解、任务规划和推理。模块化技能库(Modular Skill Library):提供稳定的行走和灵巧操作技能。连接器(Connector):轻量级的视觉-语言模型(VLM),用于将FM的高级语言计划转换为可执行的技能命令,并协调行走和操作技能。Gemini 2.0:作为基础模型,提供多模态理解和推理能力。:扩展Gemini的多模态推理能力到物理世界,增强空间和时间理解。
2025-04-09 11:13:26
526
原创 创新融合!小波变换+注意力机制,准确率达到了98.73%
当下,的研究热度爆棚,在多个领域掀起创新浪潮。这里我为大家带来两篇前沿论文的精彩解读。《An intelligent bearing fault diagnosis framework: one - dimensional improved self - attention - enhanced CNN and empirical wavelet transform》打造出创新的轴承故障诊断框架。它创新性地融合经验小波变换(EWT)与一维改进自注意力增强卷积神经网络(1D - ISACNN)。
2025-04-08 12:12:14
1207
原创 机器学习×因果推断屠榜!!Celcomen 登顶 ICLR2025,因果可识别性再破天花板!
近年来,的交叉研究在学术界与工业界掀起浪潮。这一技术融合正在重塑多个行业的决策逻辑。在医疗领域,因果推断已能精准定位药物靶点与副作用机制,推动个性化治疗方案的发展;金融风控中,反事实分析技术正重构信用评分模型,提升风险预测的准确性;自动驾驶系统则借助因果推理增强复杂场景下的决策鲁棒性,突破传统感知算法的边界。技术发展呈现高效计算架构、跨模态因果迁移和轻量化推断引擎三大方向。混合架构创新通过图神经网络与因果图模型的深度融合提升推理效率;跨模态技术实现多源数据的因果关系对齐,拓宽应用场景;
2025-04-07 11:52:47
982
原创 从“黑箱“到“透明“,可解释多模态融合如何重塑AI未来?
如今,现有关于多模态融合的研究多集中在模型性能的提升上,对可解释性的探索相对较少。然而,可解释性不仅是提升用户信任的关键,更是优化模型决策的重要途径,尤其在医疗、金融等高敏感领域,透明AI的需求日益迫切。传统多模态融合模型往往被视为“黑箱”,尽管性能优异,但决策过程缺乏透明度。近期研究证明,。例如,知识图谱与强化学习的结合,能够通过分层决策生成可解释的推理路径,同时适应复杂的用户行为模式。在医疗领域,可解释的多模态融合模型展现出巨大潜力。
2025-04-02 12:22:23
701
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人