3.5/Q1,GBD数据库最新文章解读

文章题目:Global burden of periodontal diseases among the working-age population from 1990-2021: results from the Global Burden of Disease Study 2021

    

DOI:10.1186/s12889-025-22566-x

 

中文标题:1990-2021 年全球劳动年龄人口牙周病负担:2021 年全球疾病负担研究结果

 

发表杂志:BMC Public Health

 

影响因子:1区,IF=3.5

 

发表时间:2025年4月

 

今天给大家分享一篇在 2025年4月发表在《BMC Public Health》(1区,IF=3.5)的文章。本研究旨在估计 1990 年至 2021 年全球劳动年龄人口牙周病负担。

 

研究方法:我们分析了GBD 2021 研究的数据,研究了 1990 年至 2021 年期间 204 个国家和地区 15-69 岁个体的牙周病负担。计算患病率、发病率和残疾调整生命年 (DALY) 的年龄标准化率。我们采用连接点回归分析来评估时间趋势,采用分解分析来检查影响因素,采用前沿分析来评估疾病负担与社会人口发展之间的关系。

Table&Figure

结果解读:2021 年,全球牙周病病例达到 9.513 亿(95% UI:7.29.0-11.833 亿),年龄标准化患病率(ASPR:每 100,000 人 17,011.6 例)和 8030 万新病例(ASIR:每 100,000 人 1,464.7 例)。全球有 620 万残疾调整生命年受到负担(年龄标准化残疾调整生命年率:每 100,000 人中有 110.8 人)。在所有指标中,亚洲的年龄标准化率最高,而中低 SDI 地区的 ASPR 最高(每 100,000 人 20,920.5 人)和 ASIR(每 100,000 人 1,627.9 人)。在国家层面,塞拉利昂、冈比亚和佛得角的疾病负担最高。男性的患病率始终高于女性,在 50-59 岁年龄组中观察到峰值。Joinpoint 回归分析显示,从 1990 年到 2021 年总体呈增长趋势 (AAPC: 0.04, 95% UI: 0.01-0.06),不同时期存在显著差异。自 500 年以来,卡塔尔、阿联酋和约旦等一些国家的患病率增加了 1990% 以上,而汤加和托克劳等太平洋岛国的患病率则下降了 70% 以上。分解分析发现,人口增长 (74.56%) 和老龄化 (23.00%) 是疾病负担增加的主要驱动因素。

 

结论:我们的分析揭示了全球劳动年龄人口牙周病负担的显著差异,从1990 年到 2021 年,许多地区的牙周病负担增加令人担忧。SDI 中低地区和南亚地区不成比例的负担,加上人口增长和老龄化的巨大影响,凸显了对有针对性的干预措施的迫切需求。虽然一些国家已经显著减轻了疾病负担,但其他国家的急剧增加凸显了加强预防性口腔保健系统和解决社会经济决定因素的重要性。这些发现强调了针对特定国家的战略的必要性,特别是在负担不断增加的地区,并且可以为循证政策制定提供信息,以减少牙周病对全球劳动力的影响。

 

大家在科研路上,可以借鉴这种研究方法,为自己的课题添砖加瓦。万层高楼平底起,一起加油呀!

### GBD 数据库介绍 GBD 文件地理数据库是一种用于存储空间数据和属性数据的容器,支持复杂的数据结构以及丰富的地理处理功能。为了访问这种类型的地理数据库中的要素类和其他对象,通常依赖于特定驱动器的支持[^1]。 ### 使用方法 对于想要读取或写入 GDB 文件的操作而言,GDAL 提供了解析该种格式的能力。具体来说: - **安装必要的驱动**:确保已经安装了 FileGDB 或 OpenFileGDB 驱动来实现对 GDB 的读取能力。 - **加载并操作数据集**:通过 GDAL 库可以轻松打开 .gdb 文件夹形式存在的地理数据库,并对其进行查询、遍历等基本操作。 ```python from osgeo import ogr, gdal # 注册所有可用驱动 gdal.AllRegister() driver = ogr.GetDriverByName('OpenFileGDB') # 或者 'FileGDB' dataSource = driver.Open("path_to_your_gdb_file.gdb", 0) if dataSource is None: print("无法打开指定路径下的 GDB 文件") else: layerNames = [layer.GetName() for layer in dataSource] print(f"GDB 中包含图层: {', '.join(layerNames)}") ``` 上述代码展示了如何利用 Python 和 GDAL/ogr 打开一个 GDB 文件,并打印其中所含有的各个图层名称。 ### 应用场景 GBD 数据库广泛应用于 GIS( Geographic Information System 地理信息系统)领域内各种项目当中,比如城市规划、环境保护监测、资源管理等方面。由于其能够高效地管理和分析大规模的空间数据集合,在涉及到多维度时空数据分析的任务里表现尤为出色。 #### 特定案例展示 假设有一个名为 `city_planning` 的 GBD 文件地理数据库包含了多个关于某座城市的基础设施建设情况的相关信息表单(如道路网路分布、公共设施位置)。借助 GDAL 工具包提供的接口函数,开发者们便可以在不改变原有数据格式的前提下完成对该组数据的各种定制化需求处理工作,例如提取某些特定区域内的兴趣点列表或将不同来源的地图资料融合在一起形成新的专题地图产品。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值