日前,Gartner公司发布了《Solution Path for Knowledge Management》报告,为技术专业人士提供了建立、发展和成熟知识管理(KM)实践的指导,并定义了一个用于评估进展的成熟度模型。这份报告也向我们展示了,在技术飞速发展的今天,如何构建一个能够自我进化、自我完善的知识管理体系。
这份报告强调了知识管理实践中人的因素,通过建立激励机制、提供资源和时间等手段,激发员工分享和贡献知识的积极性。这不仅能够提升员工的参与感和归属感,还能促进知识在组织内的流动和共享,从而提高组织的整体绩效。报告还提出,知识管理不仅仅是技术的应用,更是一种对知识的尊重和对人智慧的认可。
这份报告不仅仅是对知识管理的技术性指导,更是一种对知识价值的深刻洞察。研究报告提醒我们,在追求技术进步的同时,也要关注知识背后的人文价值。知识管理的最终目标,是让知识成为组织发展的驱动力,让每一个员工都能在知识的海洋中找到自己的方向,为组织的未来贡献自己的力量。
一、问题挑战
知识管理实践难以持续,导致这一问题的原因主要有以下几点:
-
对技术的过度依赖:大多数组织在开展KM项目时,过分强调存储库、工具和技术,而忽视了人的因素,这是KM失败的常见原因。
-
员工参与度低:员工很少有责任或专门的时间来撰写和管理知识,导致KM资源严重不足。
-
技术无法替代基础实践:人工智能(AI)和机器学习(ML)技术并不能消除建立可持续KM项目的需求,反而使得基础KM实践变得更加重要。
-
知识的分散性:知识和专长在组织中以多种形式存在,正式文档和策划的知识库只是冰山一角,组织和连接这些显性和隐性资源是KM的目标。
二、解决建议
报告提出了一系列解决建议,包括:
-
建立内容标准:为知识资产的结构提供指导,并将这些指导整合到撰写模板中。
-
分散化写作:在“当下”捕捉知识,并通过允许知识消费者评论、标记甚至扩展知识文章和资产,使“重用”成为“审查”。
-
将KM活动纳入工作职责:将KM活动添加到主题专家(SMEs)的正式工作职责中,并通过调整他们的其他工作成果来为这些活动创造时间和空间。
-
利用AI技术:使用基于AI的知识捕获、内容丰富和智能助手,推动KnowledgeOps的发展,将知识活动融入整个企业的工作流程中。
三、解决方案步骤
报告详细描述了建立成熟和可持续KM项目的五个阶段:
第一阶段:定义、愿景和战略
-
目标 :明确KM的目标、意义和总体框架,为后续阶段奠定基础。
-
关键活动 :
-
制定KM愿景 :与关键利益相关者合作,创建清晰简洁的描述,阐述KM计划给组织带来的好处,使所有参与者对KM的目标有共同的理解。
-
识别业务驱动因素 :确定启动KM活动背后的业务驱动因素,明确KM与业务需求的关联,以及KM机制将支持的战略目标和业务流程变更。
-
确定KM范围 :界定知识领域、存储库和资源的范围,明确哪些领域和资源将被纳入KM计划,以及哪些将被排除。
-
调查和评估现有知识资产 :对现有知识资源进行调查,构建资产清单,了解资源的所有权、用户、依赖关系和内容等基本信息,并对资源质量进行评估。
-
开发KM框架 :将KM战略转化为可执行的KM计划,创建涵盖KM计划整体的总体框架,并根据特定需求为特定部门或业务领域创建子框架。
-
定义度量和指标 :确定与战略目标一致的明确量化度量,用于评估KM计划的进展和成功程度,如活跃社区成员数量、问答数量、模板使用率等。
-
-
输出成果 :完成此阶段后,组织将对自身所拥有的知识和专长有清晰的认识,为后续阶段的知识管理活动指明方向。
-
第二阶段:人员、专长和文化
-
目标 :改变组织的知识文化,使知识共享成为常态,为KM的实施创造有利的文化环境。
-
关键活动 :
-
识别、参与和资源配置专家 :正式指定主题专家(SMEs),并为其分配时间和资源,使其能够承担KM活动。同时,为每个领域确定主要和次要的SME,以确保知识的连续性和共享。
-
创建专家目录 :将SMEs及其主题领域和联系方式编入目录,提高专家知识的可见性和可访问性,促进知识在组织内的传播和共享。
-
创建知识团队和社区 :基于共同兴趣或主题领域建立知识团队和社区,鼓励成员定期交流信息,分享最佳实践和见解,同时通过会议记录等方式捕捉和保存知识。
-
优化工作流程渠道 :将工作流程应用程序作为知识团队的扩展,为其创建专门的渠道,并指定成员监控渠道内容,提取有价值的信息并保存到知识存储库中。
-
-
输出成果 :通过认可主题专长和奖励KM活动,组织表明KM是其优先事项,增强员工的知识共享意愿,形成积极的知识共享文化。
第三阶段:标准、平台和流程
-
目标 :建立支持KM的技术基础设施和流程,确保知识的准确性、一致性和易获取性。
-
关键活动 :
-
建立内容标准 :定义知识库文章应包含的内容、组织方式和期望的详细程度,并将其整合到撰写模板中,减轻SMEs的撰写负担,提高知识库文章的质量和一致性。
-
建立组织系统 :采用简单分类层次结构来组织知识库,并结合多面分类系统,使用户能够更方便地浏览和搜索知识。同时,与知识社区使用相同的分类法标记员工,以提高知识的可发现性。
-
建立和优化知识库 :明确知识库的范围,专注于特定领域或受众;指定记录库,确保知识库内容的权威性和一致性;在发布前用高质量、高价值的内容填充知识库,以提高用户的接受度和参与度。
-
优化企业搜索功能 :将每个知识库索引并暴露给企业搜索工具,实现统一的企业知识环境。通过分析搜索日志、链接内容与关键词、开发问答内容等方法,提高搜索的相关性和准确性。
-
-
输出成果 :完成此阶段后,组织将拥有一个功能齐全、可持续的KM实践,能够支持知识的全生命周期管理。
第四阶段:持续捕获和管理
-
目标 :使知识捕获成为日常工作流程的持续部分,确保知识的及时更新和共享。
-
关键活动 :
-
分散式撰写 :在解决问题或处理问题的过程中实时创建知识库文章的初始版本,关注于解决问题或回答问题,而非撰写完美的文章,之后再进行清理和完善。
-
使重用成为审查 :将这些草稿知识库文章立即发布,允许用户扩展、完善或标记文章,促进知识库的所有权、参与度和持续改进。
-
监控KM生态系统的健康状况 :由KM经理、团队或委员会监控和维护知识库的整体内容健康状况,使用内容标准清单评估内容标准的遵守情况,衡量文章价值、搜索和导航效果等,并决定何时将WIP文章正式化和整合。
-
-
输出成果 :此阶段结束后,组织将建立一个结构良好且可持续的KM项目,知识能够被可靠地捕获和一致地共享,当需要时知识是可查找和可访问的。
第五阶段:自动化和AI
-
目标 :利用AI和ML技术进一步提升KM的效率和效果,实现KnowledgeOps的最终阶段。
-
关键活动 :
-
自动捕获 :借助在线会议工具和云AI服务自动生成会议和互动的转录,将其作为有价值的知识资产进行总结并添加到知识存储库中,或用作生成知识库文章的输入。
-
辅助内容丰富 :使用内容处理应用程序或云服务从文本信息中提取有用的元数据,并将其作为元数据应用,以提高内容的可发现性和相关性,还可使用情感分析、地理编码和语义推理等技术增强知识资产。
-
智能助手和顾问 :利用先进的大型语言模型提供智能助手和顾问,通过自然语言交互提供知识和完成任务,提高用户的效率和能力。
-
-
输出成果 :通过应用AI和ML技术,组织能够实现KnowledgeOps,将知识捕获和使用融入整个企业的工作流程中,使知识工作者从繁琐的工作中解放出来,专注于更有创造力地应用其专业知识。
四、关键观点和证据
报告中的一些关键观点和证据包括:
-
知识管理的必要性:KM将企业从依赖个人专长转变为利用集体知识,这对于地理分散的组织以及远程或混合劳动力来说是一个极其困难的挑战。
-
内容标准的重要性:内容标准定义了知识库文章应包含的内容、组织方式和期望的详细程度,这些参数被整合到撰写模板中,减轻了SMEs的创造性负担。
-
专家识别和资源分配:识别、参与和资源分配专长,创建专家目录,创建知识团队和社区,优化工作流程渠道。
-
KM框架的开发:将KM战略转化为功能性和可持续的KM项目,需要具体的角色、流程、技术和治理决策和分配。
-
度量和指标的定义:需要明确的、可量化的度量来确定战略目标的进展速度和KM项目的整体成功程度。
-
AI在KM中的作用:AI和ML技术正在变革KM生命周期的各个方面,它们不会消除建立可持续KM项目的需求,反而使得基础KM实践更加重要。
这份报告为技术专业人士提供了一个全面的知识管理的实施路径,与传统基于document service(例如:FILENET,OPENTEXT)构建的知识库体系一定的进化,通过分阶段的方法和具体的指导,组织可以逐步建立起一个成熟、可持续的知识管理体系。
请各位多多斧正