学习心得《Microsoft Fabric for Your Data Management Architecture》

近日,Gartner 发布了如何利用Microsoft Fabric 构建你企业的大数据治理架构。

一、背景

在当今复杂且不断发展的数据格局中,组织正努力构建一个统一且集成的数据生态系统。数据架构师需要评估、设计和实施一个统一、可扩展且协作的数据管理架构,而 Microsoft Fabric 作为一种预集成的 SaaS 平台,为这一目标提供了新的可能。

二、关键挑战

  1. 技术选型与整合 :Microsoft Fabric 从独立的 PaaS 服务发展为统一的 SaaS 平台,整合了数据管理和分析工具。然而,它与 Azure Synapse Analytics 和 Azure Databricks 等服务存在功能重叠,组织需要确定这些服务是互补的,还是应该完全迁移到 Microsoft Fabric。此外,随着技术的不断更新,组织需要评估是否应将 Microsoft Fabric 作为独立平台部署,还是仅利用其特定组件,或者探索其他替代方案。

  2. 数据治理与合规性 :Microsoft Purview 提供广泛的数据治理能力,而 OneLake 目录则专注于 Fabric 环境内的数据发现和血缘关系。多种治理方法可能导致管理员的困惑,因此需要清晰的指南来简化管理。同时,组织必须确保数据管理架构能够满足数据质量、监管合规等要求,以支持业务目标。

  3. 架构设计与实施 :组织需要根据自身业务需求、用例和现有数据架构来设计数据管理架构。这涉及到考虑集成复杂性、可扩展性、易用性、成本和敏捷性等因素。此外,如何在 Microsoft Fabric 中实现数据的存储、处理、访问、交付等功能,以及如何与其他 Microsoft 服务(如 Azure、Power BI 和 Microsoft 365)进行无缝集成,也是需要解决的挑战。

  4. 数据存储与管理 :OneLake 作为 Microsoft Fabric 的统一存储层,支持多种数据类型,但在数据存储、访问和管理方面仍存在一些限制,如数据镜像和快捷方式的可用性有限,以及与某些数据库和数据源的集成尚不完善。

  5. 数据处理与分析 :Microsoft Fabric 提供了多种数据处理工具,如 Data Factory、Fabric Data Engineering、Fabric Data Science 和 Real-Time Intelligence 等。然而,这些工具在功能和性能方面仍存在一些局限性,如 Dataflow Gen2 的某些限制、Fabric Data Warehouse 对特定数据格式的支持有限等,可能影响组织对数据的处理和分析能力。

  6. 数据访问与交付 :确保数据能够安全、高效地被访问和交付给不同的用户和应用程序是一个关键挑战。Power BI 作为 Microsoft Fabric 的主要数据交付工具,虽然功能强大,但也存在一些限制,如语义模型的编辑和数据类型映射问题等。

  7. DataOps 实践 :DataOps 是一种敏捷且协作的数据管理实践,旨在提高数据流的沟通、集成、自动化、可观测性和操作性。在 Microsoft Fabric 中,Data Factory 是主要的 DataOps 工具,但它在版本控制、CI/CD 等方面的能力有限,需要与 Git 等外部工具集成。

  8. 数据治理与元数据管理 :有效的数据治理和元数据管理对于确保数据的准确性、一致性和安全性至关重要。Microsoft Purview 和 OneLake 目录提供了数据治理和元数据管理功能,但在实际应用中可能存在一些局限性,如 DLP 策略的适用范围有限、用户对敏感信息标签的主动应用等。

三、方案建议

  1. 全面评估业务需求和技术能力 :组织应深入分析自身的业务需求、现有数据架构和未来用例,以确定 Microsoft Fabric 是否能够满足其数据管理要求。同时,评估组织内部的技术能力和资源,以确保能够有效地实施和管理 Microsoft Fabric 解决方案。

  2. 采用混合架构策略 :根据组织的具体情况,可以考虑采用统一模式或混合模式来实施 Microsoft Fabric。在统一模式下,将所有数据层(青铜、银和金)都包含在 Microsoft Fabric 生态系统中,适合主要用例为仪表盘、报告和分析,且已有投资于 Azure 服务的组织。而在混合模式下,青铜和银层位于外部平台或数据库中,金层存储在 Microsoft Fabric 的 OneLake 中,适用于希望利用现有专有数据湖仓产品的组织。

  3. 加强数据治理和合规性管理 :制定清晰的数据治理策略,明确数据政策、所有权和管理流程。利用 Microsoft Purview 和 OneLake 目录等工具,加强数据发现、分类、保护和合规性管理。同时,提供充分的培训和指导,确保用户能够正确地应用敏感信息标签和遵循数据治理政策。

  4. 优化数据存储和处理流程 :合理规划数据在 OneLake 中的存储和管理,利用其统一存储层的优势,减少数据重复和移动。根据数据的特点和分析需求,选择合适的存储格式和处理引擎,如 Delta Lake 格式和 Apache Spark 计算引擎,以提高数据处理的效率和性能。

  5. 提升数据处理和分析能力 :深入了解 Microsoft Fabric 提供的各类数据处理工具的功能和限制,并根据实际需求进行合理选择和组合使用。例如,在数据集成方面,利用 Data Factory 的数据流和数据管道功能;在数据科学和机器学习方面,借助 Fabric Data Science 的笔记本和 MLflow 体验等。同时,关注工具的更新和发展,及时利用新功能来提升数据处理和分析能力。

  6. 强化数据访问和交付机制 :根据用户和应用程序的需求,提供多样化的数据访问和交付方式。通过 Power BI 等工具,创建直观、交互式的仪表盘和报告,使业务用户能够轻松地获取和理解数据洞察。同时,优化数据查询和交付的性能,确保数据的及时性和准确性。

  7. 推进 DataOps 实践 :在组织内推广 DataOps 文化,加强数据管理团队与数据消费团队之间的沟通和协作。利用 Data Factory 的数据编排和可观测性功能,以及与 Git 的集成,实现数据管道的自动化、版本控制和 CI/CD 实践,提高数据系统的可靠性、可扩展性和效率。

  8. 持续监测和改进 :建立有效的监测和评估机制,持续跟踪 Microsoft Fabric 解决方案的性能、成本和业务价值。根据监测结果,及时调整和优化数据管理架构和策略,以确保其能够适应组织不断变化的业务需求和技术环境。

四、方案架构

架构的目标与范围

  • 设计数据管理架构的指导 :该研究详细阐述了如何利用 Microsoft Fabric SaaS 解决方案来设计数据管理架构,包括对各种组件和功能的概述、比较,以及它们与特定用例的对应关系,并提供了实施的最佳实践。

目标组织与应用场景

  • 适用的组织类型 :适用于那些正在使用或考虑使用 Microsoft Fabric 来开发数据管理架构的组织。这些组织可能具有多样的业务需求和数据管理目标,如需要整合多个数据源、处理不同类型的数据、支持复杂的数据分析等。

  • 典型应用场景 :例如,组织希望通过评估当前业务需求、未来用例和现有数据架构,来确定是否采用 Microsoft Fabric 的统一或组合数据分析方法,以实现最佳价值;或者需要在 Microsoft Fabric 的 Lakehouse 中实施勋章架构,以提高数据管理的效率和可访问性。

组件与功能的对应关系

  • 数据管理的关键组件 :研究中提到了 Gartner 的数据管理参考架构所涵盖的多个关键组件能力,如数据摄取、数据存储、数据处理引擎、数据访问、数据交付、DataOps、数据治理和元数据管理等,并解释了这些组件在数据管理架构中的作用。

  • Microsoft Fabric 的对应功能 :阐述了 Microsoft Fabric 中与这些关键组件相对应的具体功能和服务,如用于数据摄取的 Data Factory、用于数据存储的 OneLake、Fabric Data Warehouse 和 Fabric Lakehouse 等,以及它们如何支持组织的数据管理需求。

  1. 统一模式架构方案

    • 数据存储层(OneLake) :将所有数据存储在 OneLake 中,利用其统一存储层的优势,支持多种数据类型,如结构化、半结构化和非结构化数据。OneLake 基于 Azure Data Lake Storage Gen2 架构,采用 Delta Lake 格式存储数据,确保数据的可靠性和高性能访问。

    • 数据处理层 :利用 Fabric Lakehouse 的 Apache Spark 和 SQL 计算引擎,对数据进行处理和转换。数据可以从 OneLake 中直接读取和写入,无需数据移动或复制。通过笔记本、数据管道和 Dataflow Gen2 等工具,实现数据的清洗、转换、 enrichment 和分析等功能。

    • 数据访问和交付层 :使用 Power BI 作为主要的数据交付工具,创建交互式仪表盘、可视化和报告。Power BI 可以通过 DirectQuery 模式、Import 模式和 Direct Lake 模式等方式访问和交付数据,满足不同用户和应用程序的需求。

    • 数据治理和元数据管理层 :结合 Microsoft Purview 和 OneLake 目录,实现数据的治理和元数据管理。Purview 提供全局数据治理能力,涵盖整个企业数据资产,而 OneLake 目录则专注于 Fabric 生态系统内的数据管理。通过定义数据策略、应用敏感信息标签、跟踪数据血缘等方式,确保数据的安全性、合规性和可用性。

  2. 混合模式架构方案

    • 数据存储层 :青铜和银层数据存储在外部平台或数据库中,如传统数据湖或数据仓库。金层数据则存储在 Microsoft Fabric 的 OneLake 中。通过数据镜像和快捷方式等功能,将外部数据引入到 OneLake 中,实现数据的统一管理和访问。

    • 数据处理层 :利用 Fabric Data Factory 或其他集成工具,将外部数据源中的数据迁移到 OneLake 中的金层。在 OneLake 中,使用 Fabric Lakehouse 的计算引擎和工具对数据进行处理和分析,与其他 Microsoft 服务(如 Azure 机器学习、Power BI 等)进行集成,实现更高级的数据分析和机器学习功能。

    • 数据访问和交付层 :与统一模式类似,使用 Power BI 作为数据交付的核心工具,结合其他数据访问和可视化工具,为用户提供了一个全面的数据访问和交付解决方案。根据数据的位置和特点,灵活选择数据访问模式和可视化方式,确保用户能够及时获取所需的数据洞察。

    • 数据治理和元数据管理层 :在混合模式下,数据治理和元数据管理需要覆盖外部数据源和 Microsoft Fabric 生态系统内的数据。通过制定统一的数据治理策略和标准,确保数据在不同系统和平台之间的一致性和合规性。同时,利用 OneLake 目录和 Purview 等工具,实现对数据的全面治理和元数据管理。

五、小结

该报告针对Microsoft Fabric如何 企业提供了一个全面的云端解决方案,涵盖了端到端的数据管理能力。组织应根据自身业务需求、技术栈和未来战略规划,评估 Microsoft Fabric 是否适合其数据管理架构。通过采用合适的架构模式(统一模式或混合模式),并结合有效的数据治理、处理、访问和交付策略,组织可以充分利用 Microsoft Fabric 的优势,实现数据驱动的业务决策和创新。同时,应密切关注 Microsoft Fabric 的技术发展和更新,及时调整和优化数据管理策略,以适应不断变化的技术和业务环境。

相信这对于其他云上数据平台也有一定参考意义,请大家斧正

### Broadcom Tomahawk 3 Switch Chip Schematic Diagram Broadcom's Tomahawk series of Ethernet switch silicon has gained significant traction due to its high performance and scalability. The Tomahawk 3, specifically designed for data center applications, supports up to 12.8 Tbps of non-blocking bandwidth with advanced features such as deep buffers, enhanced telemetry, and programmable packet processing. While direct access to proprietary schematics is typically restricted by confidentiality agreements between vendors and customers, a general overview can be provided based on publicly available information[^1]. #### Key Components and Architecture Overview The architecture of the Tomahawk 3 includes several critical components: - **Switch Fabric**: This core component manages traffic flow across multiple ports efficiently. - **Packet Processor**: Handles incoming packets, performing actions like classification, filtering, and forwarding decisions. - **Buffer Management Unit (BMU)**: Manages memory allocation for storing packets temporarily during transit. - **Interface Units**: Connects external devices via various port types including QSFP-DD for higher-speed connections. Below is an illustrative representation rather than an exact replica of what one might expect from a detailed schematic diagram: ```plaintext +-----------------------------------+ | | | Packet Processor |<-----> External Interfaces (QSFP-DD etc.) | | +----+----------------+ | v +------------------+----------------+ | Buffer | | | Management | | | Unit | | +----+----------------+ | v +------------------+----------------+ | Switch | | | Fabric | | +------------------+----------------+ ``` This simplified block diagram highlights major functional blocks within the chip but does not depict all internal wiring or specific pinouts which would require official documentation directly from Broadcom. For precise details about physical layout, pin configurations, power requirements, and other technical specifications necessary for hardware design purposes, obtaining authorized datasheets and application notes from Broadcom remains essential[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

架构师学习成长之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值