AIGC大语言模型微调指南:让模型更懂你的业务需求
关键词:大语言模型、模型微调、参数高效微调、AIGC、业务场景适配、迁移学习、过拟合控制
摘要:大语言模型(LLM)的预训练能力为AIGC(生成式AI)提供了强大基础,但通用模型在垂直业务场景中常因“知识偏差”导致效果不佳。本文系统讲解大语言模型微调的核心技术体系,涵盖全参数微调和参数高效微调(PEFT)的原理对比、数学模型推导、实战流程(数据准备→模型选择→训练调优→效果评估),并结合电商、金融、医疗等真实业务场景,给出可复用的技术方案。通过本文,开发者可掌握从需求分析到模型落地的完整微调链路,让大模型精准适配业务需求。
1. 背景介绍
1.1 目的和范围
当前,以GPT-3.5/4、LLaMA系列、ChatGLM为代表的大语言模型已成为AIGC的核心基础设施。但预训练阶段的通用语料(如网页、书籍、论文)与垂直业务场景(如金融合同审核、医疗病历摘要、电商客服对话)存在显著的“语义鸿沟”。例如:
- 通用模型对“信用卡溢缴款”等金融术语的理解可能