NLP学习路线图(三十二): 模型压缩与优化

一、 核心压缩与优化技术详解

1. 知识蒸馏:智慧的传承(Knowledge Distillation, KD)
  • 核心思想“师授徒业”。训练一个庞大、高性能但笨重的“教师模型”(Teacher Model),让其指导训练一个轻量级的“学生模型”(Student Model)。学生模型学习模仿教师模型的输出行为(预测概率分布),而非仅仅学习原始数据的硬标签。

  • 关键机制

    • 软标签(Soft Targets):教师模型对输入样本预测的概率分布(如softmax输出)包含了比“正确/错误”硬标签更丰富的知识(如类间相似性、模型置信度)。

    • 蒸馏损失(Distillation Loss):学生模型的目标函数通常结合:

      • KD Loss:衡量学生输出概率分布与教师输出概率分布的差异(常用KL散度)。

      • Student Loss:衡量学生输出与真实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值