博弈论在电动车和电网系统中分布式模型预测控制研究附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

随着全球电动车保有量的迅猛增长,电动车与电网系统的交互关系愈发复杂。电动车作为可调节负荷,其充电行为既能缓解电网调峰压力,也可能因无序充电引发电网运行风险。博弈论作为研究决策主体间策略互动的理论工具,与分布式模型预测控制(Distributed Model Predictive Control,DMPC)相结合,能够有效协调电动车用户、电网运营商、充电服务商等多方利益,实现电网的安全、经济与高效运行,成为当下电力系统领域的研究热点。

二、理论基础

2.1 博弈论

博弈论将系统中的参与者视为具有自主决策能力的个体,通过构建博弈模型分析参与者之间的策略选择和利益均衡。在电动车与电网系统中,常见的博弈类型包括非合作博弈与合作博弈 。

  • 非合作博弈:各参与者仅从自身利益最大化出发制定策略,如电动车用户为追求最低充电成本自行选择充电时段,可能导致电网负荷峰上加峰。
  • 合作博弈:参与者通过协商达成合作协议,共同优化系统目标,例如电动车用户与电网运营商签订充电协议,在电网需要时提供负荷调节服务以获取补偿。

2.2 分布式模型预测控制

分布式模型预测控制是在传统模型预测控制基础上发展而来,它将复杂系统分解为多个子系统,各子系统在本地进行模型预测与优化,并通过信息交互实现协同控制。在电动车与电网系统中,DMPC 可使每个电动车充电桩或区域电网作为独立的控制单元,根据本地信息(如电动车电池状态、实时电价)进行短期预测与优化控制,同时与相邻单元交换信息,避免局部最优,实现全局优化。

2.3 电动车与电网系统交互模型

电动车与电网系统的交互涉及能量流动与信息交互。从能量角度,电动车的充电与放电行为直接影响电网的功率平衡;从信息角度,用户的充电需求、电网的运行状态等信息在各主体间传递,为决策提供依据。构建准确的交互模型,包括电动车充电负荷模型、电网潮流模型等,是实现有效控制的前提。

三、基于博弈论的分布式模型预测控制算法设计

3.1 博弈模型构建

  1. 确定参与者:明确电动车用户、电网运营商、充电服务商等为博弈参与者。
  1. 定义策略空间:电动车用户的策略为选择充电时段与充电功率;电网运营商的策略为制定电价政策与负荷调节指令;充电服务商的策略为设置充电费用与分配充电资源。
  1. 设定收益函数:电动车用户的收益与充电成本、出行便利性相关;电网运营商的收益与电网运行成本、可靠性提升效益有关;充电服务商的收益取决于充电服务收入与运营成本。

3.2 分布式模型预测控制流程

  1. 信息采集与预测:各子系统(如电动车充电桩、区域电网控制中心)采集本地信息,包括电动车的荷电状态(SOC)、剩余行驶里程、电网实时功率等,并利用预测模型(如时间序列预测、机器学习预测)预估未来一段时间内的负荷需求、电价波动等。
  1. 本地优化:基于采集与预测的信息,各子系统在本地进行模型预测控制优化,以自身收益最大化为目标,求解最优控制策略(如电动车的充电计划、电网的功率调节方案)。
  1. 信息交互与协同:各子系统将优化结果(如计划充电功率、可调节负荷量)与相邻子系统进行交互,通过通信网络实现信息共享。根据接收到的其他子系统信息,调整自身策略,以实现全局优化。
  1. 策略执行与反馈:将最终确定的控制策略下发执行,如电动车按照优化后的充电计划充电,电网调节各区域功率分配。同时,收集执行后的实际数据(如实际充电功率、电网频率变化),反馈给各子系统,用于下一轮的预测与优化。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值