DeepSeek-Prover-V2 处理数学研究案例的具体步骤

一、问题解析与逻辑分解
  1. 命题形式化转换

    • 将数学命题(如论文中的非形式化定理)转化为形式化语言描述,利用自然语言处理模块自动提取关键逻辑节点。
    • 通过递归分解算法将原始命题拆解为多层子目标,形成可独立验证的证明链(Proof Chain)。
  2. 自然语言意图映射

    • 分析论文中的自然语言描述细节(如“存在性证明需构造反例”),生成与形式化证明目标对应的语义标签。

二、形式化证明生成
  1. Lean 4 代码生成

    • 基于 DeepSeek-V3 的代码生成能力,自动输出与子目标对应的 Lean 4 代码框架,包含定理声明和环境依赖。
    • 采用 DSP(Draft, Sketch, Prove)范式,首先生成自然语言草稿,再转换为代码骨架,最终补全严格证明步骤。
  2. 引理库交互匹配

    • 调用内置数学引理库(含 50 万条形式化数学知识),自动匹配候选引理辅助填充证明细节。
    • 对未覆盖的引理触发自主学习机制,通过递归定理生成管道扩展知识库。

三、动态修正与验证
  1. 错误定位反馈

    • 在 Lean 4 验证失败时,通过反向传播机制定位错误步骤(如类型不匹配或逻辑跳跃),生成备选修正策略。
    • 提供多路径候选方案(平均每个错误点生成 3-5 条修正建议),支持用户交互式选择。
  2. 多模型协同优化

    • 7B 模型优先处理有限基数、组合数学等特定领域问题,其生成结果作为 671B 模型的输入约束条件。
    • 两个模型通过 GRPO 强化学习策略共享成功证明路径,优化全局推理效率。

四、应用案例实例
  • 论文形式化加速‌:对于 300 页非形式化数学论文,系统在 72 小时内完成全篇定理的 Lean 4 代码生成与验证,错误修正迭代次数降低至平均每个定理 1.2 次。
  • 跨领域知识迁移‌:在代数拓扑领域研究中,通过迁移抽象代数引理库中的群论知识,成功验证高维流形分类定理的 27 个子目标。

五、性能指标
  • 验证覆盖率‌:在 AIME 24/25 测试集中,完整证明链生成成功率超过 88.9%。
  • 效率提升‌:相较于传统手工形式化验证,处理速度提升 50-70 倍
  • 支持资源

    1个API Key调用全球主流模型(GPT/Claude/Gemini/Llama等)

    统一接入标准,无需为不同平台重复开发接口

    智能路由系统自动选择最优服务节点

  • 立即登录DMXAPI官网
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值