Gemini 2.5 Pro 隐式缓存效果监控指南
一、响应字段分析
1️⃣ 核心指标提取
检查 API 响应中的 cached_content_token_count 字段,直接显示本次请求通过缓存复用的 Token 数量及节省成本比例;
示例响应结构:
{
"text": "响应内容",
"usage_metadata": {
"cached_content_token_count": 2048, // 本次缓存节省的 Token 数量
"total_token_usage": 4096 // 实际消耗的 Token 总数(含缓存部分)
}
}
通过对比字段值可计算缓存成本节省比例(如 2048/4096=50%)。
二、缓存命中率优化策略
1️⃣ 前缀稳定性验证
确保请求开头包含≥2048 Token 的稳定内容(如系统提示词、文档元数据),动态变量置于后半部分;
短时(10 分钟内)批量发送相似前缀请求,可显著提高命中率。
2️⃣ 动态内容隔离
若高频请求场景(如聊天机器人),建议将用户输入与系统指令分离:
# 示例:动态内容隔离的设计
stable_part = "系统指令和知识库元数据..." # ≥2048 Token
variable_part = "用户问题:如何配置 API?"
full_prompt = stable_part + variable_part
三、监控工具与调试建议
1️⃣ 官方工具集成
通过 Vertex AI 控制台 查看 API 请求的缓存命中率趋势图,支持按时间范围筛选和导出 CSV 报告;
国内开发者可使用代理平台(如 laozhang.ai)提供的实时成本仪表盘,区分缓存与实时计算消耗比例。
2️⃣ 自动化验证脚本
编写脚本批量发送测试请求,统计缓存命中率:
import requests
def check_cache_rate(api_key, prefix):
headers = {"Authorization": f"Bearer {api_key}"}
responses = [requests.post(api_url, json={"prompt": prefix + str(i)}) for i in range(10)]
cached_tokens = sum([resp.json()["cached_content_token_count"] for resp in responses])
return cached_tokens / (10 * len(prefix.split()))
四、注意事项
1️⃣ 缓存触发条件
Gemini 2.5 Pro 需确保请求前缀≥2048 Token,否则系统不会触发隐式缓存;
动态内容占比过高可能导致缓存失效,建议固定内容占比≥60%。
2️⃣ 区域服务限制
国内开发者通过代理接入时需确认是否完整传递 usage_metadata 字段,部分平台可能裁剪响应数据;
若返回结果中无缓存相关字段,建议检查 API 版本是否为 Gemini 2.5 Pro 或更新。
通过分析响应字段并结合自动化工具,开发者可精准优化隐式缓存使用策略,实现成本节约最大化。