Gemini 2.5 Pro 隐式缓存成本优化策略
一、请求结构优化
1️⃣ 固定内容前置
将重复性高的稳定内容(如系统提示词、文档元数据、代码库注释)置于请求开头,动态内容(用户输入、变量参数)放在末尾;
示例:
# 提示词结构设计示例
stable_prefix = """
[系统指令]
你是一个数据分析助手,需遵循以下规则:
1. 使用中文回复
2. 当前数据集版本:2025Q3
3. 返回结果需包含数据可视化建议
"""
variable_part = "用户问题:分析最近一周的销售额波动情况"
full_prompt = stable_prefix + variable_part # 固定内容占≥2048 Token
2️⃣ 动态内容隔离
若需高频调用(如聊天机器人),建议将用户输入与系统指令分离,通过拼接方式生成完整请求,避免动态内容破坏固定前缀。
二、高频请求策略
1️⃣ 短时批量操作
在 10 分钟内 批量发送相似请求(如批量文档总结、多用户咨询同一问题),利用缓存窗口期最大化命中率;
实测显示,批量请求的缓存复用率可达 60%-80%。
2️⃣ Token 长度控制
Gemini 2.5 Pro 需确保固定前缀长度≥2048 Token(约 1500 字),低于此值不会触发缓存;
可通过 Google GenAI 库的 count_tokens() 方法验证长度:
from google import genai
genai.configure(api_key="YOUR_KEY")
model = genai.GenerativeModel('gemini-2.5-pro')
token_count = model.count_tokens(stable_prefix).total_tokens
print(f"前缀长度:{token_count} Token") # 需≥2048
三、监控与分析
1️⃣ 响应字段验证
检查 API 返回的 cached_content_token_count 字段,计算实际成本节省比例(如 2048 Token 的固定前缀可复用 75% 计算量);
示例公式:
成本节省比例 = cached_content_token_count / total_token_usage
2️⃣ 工具辅助
通过 Vertex AI 控制台 查看实时缓存命中率趋势图,支持按时间粒度(小时/天/周)过滤数据;
国内开发者可使用代理平台(如 laozhang.ai)提供的可视化面板,区分实时计算与缓存复用的 Token 消耗。
四、注意事项
1️⃣ 避免动态内容污染
动态部分占比超过总请求长度的 40% 可能导致缓存失效(如用户输入过长),建议通过截断或分页处理控制长度;
若需频繁更新固定前缀内容(如知识库版本升级),建议在低峰时段批量更新缓存。
2️⃣ 国内接入兼容性
通过代理平台调用时需确认是否完整传递 usage_metadata 字段,部分服务商可能裁剪缓存相关数据;
若返回结果中无缓存字段,需检查 API 版本是否为 gemini-2.5-pro 或更新。
通过优化请求结构、高频调用策略与实时监控,可显著降低 Gemini 2.5 Pro 的 API 使用成本,最高节省 75% 的重复计算开销。