一、功能特性与默认配置
1️⃣ 自动启用机制
隐式缓存功能 默认开启,适用于 Gemini 2.5 Pro 和 2.5 Flash 模型,无需开发者手动配置触发;
请求前缀识别:系统自动检测 API 请求中的重复上下文前缀(需满足最低 Token 长度要求),命中缓存后直接复用计算结果。
二、优化缓存命中率的实践方法
1️⃣ 请求内容结构化设计
固定内容前置:将稳定的系统提示词、代码库或文档元数据置于请求开头,动态内容(如用户输入、变量参数)放在末尾;
# 示例:聊天机器人请求格式优化
prompt = """
[系统指令](稳定部分)
你是一个专业的技术支持助手,需用中文回复。
当前知识库版本:2025Q2。
[用户问题](动态部分)
{user_input}
"""
2️⃣ 高频请求策略
短时批量请求:在 10 分钟内发送具有相同前缀的请求,可显著提升缓存命中率;
最低 Token 要求:Gemini 2.5 Flash 需前缀 ≥1024 Token,Gemini 2.5 Pro 建议前缀 ≥2048 Token 以达到最佳效果。
三、监控与验证
1️⃣ 响应字段分析
检查 API 返回的 cached_content_token_count 字段,确认缓存复用的 Token 数量及成本节省比例;
示例输出:
{
"text": "响应内容",
"cached_content_token_count": 3784 // 本次请求通过缓存节省了 3784 Token 的计算成本
}
2️⃣ 常见场景优化
代码分析:将代码库的通用注释规范或架构描述作为固定前缀,每次请求附加待分析的代码片段;
文档处理:将长文档的元数据(如标题、作者、版本)置于请求开头,动态追加具体问答或总结任务。
四、注意事项
与显式缓存的区别:隐式缓存无需手动标记高频请求,系统自动完成重复内容识别与复用;
区域限制:国内开发者通过代理平台(如 laozhang.ai)接入时,需确保代理服务支持隐式缓存传递;
成本控制:若缓存命中率低于预期,检查请求前缀是否频繁变动,或尝试延长固定内容的 Token 长度。
通过合理设计请求结构并监控缓存效果,开发者可最大化利用隐式缓存功能,显著降低 Gemini 2.5 Pro 的 API 使用成本。