终于等到了,PINN+KAN!简直是2025最强创新点

2025深度学习发论文&模型涨点之——PINN+KAN

当前PINN结合KAN的研究前沿聚焦于动态自适应机制的设计。

清华大学团队提出的AdaKAN-PINN框架,通过实时监测残差分布动态调整网络宽度与深度,在等离子体湍流模拟中实现了亚网格尺度特征的自主捕获。该系统采用分阶段训练策略:前期利用KAN的符号回归能力解析主导物理模式,后期通过PINN机制补全高阶非线性效应,最终在托卡马克装置参数预测任务中,将误差带从传统方法的±15%收窄至±4.3%。这种分层解耦策略为多物理场耦合问题提供了可扩展解决方案。

我整理了一些PINN+KAN【论文+代码】合集,以需要的同学公众号【AI科研灵感】发666自取。

论文精选

论文1:

Enhancing Physics-Informed Neural Networks with a Hybrid Parallel Kolmogorov-Arnold and MLP Architecture

通过混合并行Kolmogorov-Arnold和MLP架构增强物理信息神经网络

方法

      混合并行架构:提出了一种新型的混合并行Kolmogorov-Arnold网络(KAN)和多层感知器(MLP)的物理信息神经网络(HPKM-PINN)架构。

      可调参数ξ:引入可调参数ξ,动态平衡KAN的可解释函数逼近和MLP的非线性特征学习,通过加权融合它们的输出来增强预测性能。

      系统评估:通过系统数值评估,研究了ξ对模型在函数逼近和偏微分方程(PDE)求解任务中的性能影响。

      基准实验:在多个经典PDEs(如泊松方程和对流方程)上进行基准实验,验证了HPKM-PINN的性能。

      图片

      创新点

      性能提升:在泊松方程实验中,HPKM-PINN的相对误差比单独的KAN或MLP模型降低了两个数量级,具体从KAN的2.31%和MLP的1.84%降低到0.29%。

      收敛速度:HPKM-PINN在训练过程中表现出更快的收敛速度,例如在对流方程实验中,HPKM-PINN在10,000次迭代内达到的最小损失值比单独的KAN或MLP模型更快。

      泛化能力:在多种物理系统中验证了HPKM-PINN的数值稳定性和鲁棒性,证明了其在解决复杂PDE驱动问题中的通用性和可扩展性。

      图片

      论文2:

      KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics

      KAN-ODEs:用于学习动力系统和隐藏物理的Kolmogorov-Arnold网络常微分方程

      方法

      KAN-ODE框架:将Kolmogorov-Arnold网络(KAN)作为神经常微分方程(Neural ODE)框架的骨干网络,应用于时间依赖和时间网格敏感的动力系统和科学机器学习应用中。

      KAN结构:基于Kolmogorov-Arnold表示定理,KAN使用可学习的激活函数,这些激活函数由网格化的基函数和相关的可训练缩放因子组成。

      训练方法:采用伴随敏感性方法进行训练,通过自动微分技术计算梯度,更新KAN的参数。

      应用验证:在多个经典动力系统模型(如Lotka-Volterra捕食者-猎物模型)中验证了KAN-ODEs的性能。

      图片

      创新点

        性能提升:在Lotka-Volterra捕食者-猎物模型中,KAN-ODEs的训练损失比基于MLP的神经ODEs低两个数量级,具体从MLP的3×10^-5降低到8.3×10^-7。

        收敛速度:KAN-ODEs在训练过程中表现出更快的收敛速度,例如在10^5次迭代内达到的最小训练损失比MLP快3-4倍。

        图片

        论文3:

        Learnable Activation Functions in Physics-Informed Neural Networks for Solving Partial Differential Equations

        在物理信息神经网络中使用可学习激活函数求解偏微分方程

        方法

          可学习激活函数:研究了在物理信息神经网络(PINNs)中使用可学习激活函数求解偏微分方程(PDEs)的效果,特别是比较了传统多层感知器(MLP)与固定和可学习激活函数以及Kolmogorov-Arnold网络(KAN)的效果。

          最大Hessian特征值分析:通过最大Hessian特征值分析了模型的敏感性和稳定性,提供了关于收敛动态和准确逼近复杂高频模式能力的见解。

          应用验证:在多种PDEs(如Helmholtz、波动、Klein-Gordon、对流-扩散和腔体问题)上验证了方法的有效性。

          图片

          创新点

          性能提升:在Helmholtz方程实验中,B-spline(A1)模型的测试误差最低,为1.93%,比其他模型低1-2个百分点。

          收敛速度:B-spline(A1)和Fourier(A1)模型在训练过程中表现出更快的收敛速度,例如在10,000次迭代内达到的最小训练损失比其他模型低1-2个数量级。

          泛化能力:KAN模型在从有限训练数据中学习符号源项和完整解剖面的能力上表现出色,特别是在高复杂度和数据匮乏的情况下。

          图片

          1. 用户管理模块 用户注册与登录:支持邮箱 / 手机号注册,提供密码找回和重置功能 第三方登录:集成微信、QQ、微博等第三方登录方式 用户信息管理:个人资料编辑、头像上传、个性签名设置 隐私设置:控制个人音乐喜好、播放历史的公开程度 用户社交关系:关注其他用户、查看关注列表和粉丝列表 2. 音乐资源管理模块 歌曲管理:歌曲信息录入、分类、标签管理 艺术家管理:艺术家信息录入、专辑管理 歌单管理:支持用户创建、编辑和分享歌单 音乐分类:按风格(流行、摇滚、古典等)、语言、年代等分类 音乐上传与审核:支持音乐人上传作品,管理员审核机制 3. 音乐播放模块 音乐播放控制:播放、暂停、上一首、下一首、音量调节 播放模式:单曲循环、列表循环、随机播放 歌词显示:同步显示歌词,支持歌词滚动和字体调整 播放历史记录:记录用户播放过的音乐 音乐收藏:支持收藏歌曲、艺术家和歌单 4. 协同过滤推荐模块 基于用户的协同过滤:根据用户相似度推荐音乐 基于物品的协同过滤:根据音乐相似度推荐音乐 混合协同过滤:结合用户和物品协同过滤的优 推荐结果展示:个性化推荐歌单、每日推荐、相似音乐推荐 推荐算法优化:不断优化算法,提高推荐准确率 5. 用户交互与社交模块 音乐评论:用户可对歌曲、专辑和歌单发表评论 赞与分享:支持对音乐内容赞和分享到社交平台 音乐动态:发布音乐相关的动态、心情和感悟 私信功能:用户间可以发送私信交流音乐心得 音乐社区:讨论音乐话题、分享音乐资源的社区板块 6. 个性化设置模块 音乐偏好设置:设置喜欢的音乐风格、艺术家和歌曲 推荐权重调整:调整不同推荐算法的权重 界面主题设置:支持多种主题风格切换 通知设置:自定义接收通知的类型和方式 7. 数据分析与日志模块 用户行为分析:分析用户的播放历史、收藏行为等 音乐热度分析:统计歌曲、艺术家的播放量和收藏量 推荐效果分析:评估推
          评论
          添加红包

          请填写红包祝福语或标题

          红包个数最小为10个

          红包金额最低5元

          当前余额3.43前往充值 >
          需支付:10.00
          成就一亿技术人!
          领取后你会自动成为博主和红包主的粉丝 规则
          hope_wisdom
          发出的红包
          实付
          使用余额支付
          点击重新获取
          扫码支付
          钱包余额 0

          抵扣说明:

          1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
          2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

          余额充值