还在死磕传统PINN?自适应版本训练效率狂飙,审稿人直呼“这才是真创新“!

各位搞AI+物理研究的同学们注意啦,今天咱们来盘一盘这个被顶会顶刊审稿人偏爱的热门主题——自适应PINN(物理信息神经网络)。

众所周知,传统PINN虽火,但它训练不稳定、计算成本高,导致很多人在顶会deadline前依然疯狂改代码...而自适应PINN直接从底层重构优化逻辑,引入动态权重分配和自适应采样策略,不仅大幅提高模型准确性、鲁棒性,还能增强模型的泛化能力,在流固耦合、非稳态传热这些地狱级场景照样OK!

因此,与其在传统PINN里卷损失函数,不如考虑自适应PINN创新。目前,这方向可参考的杰出成果已有不少,比如计算效率比现有方法高40%的AdaI-PINNs...我整理了有11篇自适应PINN最新的成果,希望大家看完都能有所收获。

全部论文+开源代码需要的同学看文末

Adaptive Interface-Pinns (Adai-Pinns) for Inverse Problems: Determining Material Properties for Heterogeneous Systems

方法:论文介绍的是一种自适应的物理信息神经网络框架,名为AdaI-PINNs,用于解决反问题,特别是在确定异质系统中不连续材料属性的反问题中表现出色,计算效率比现有方法高约40%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值