各位搞AI+物理研究的同学们注意啦,今天咱们来盘一盘这个被顶会顶刊审稿人偏爱的热门主题——自适应PINN(物理信息神经网络)。
众所周知,传统PINN虽火,但它训练不稳定、计算成本高,导致很多人在顶会deadline前依然疯狂改代码...而自适应PINN直接从底层重构优化逻辑,引入动态权重分配和自适应采样策略,不仅大幅提高模型准确性、鲁棒性,还能增强模型的泛化能力,在流固耦合、非稳态传热这些地狱级场景照样OK!
因此,与其在传统PINN里卷损失函数,不如考虑自适应PINN创新。目前,这方向可参考的杰出成果已有不少,比如计算效率比现有方法高40%的AdaI-PINNs...我整理了有11篇自适应PINN最新的成果,希望大家看完都能有所收获。
全部论文+开源代码需要的同学看文末
Adaptive Interface-Pinns (Adai-Pinns) for Inverse Problems: Determining Material Properties for Heterogeneous Systems
方法:论文介绍的是一种自适应的物理信息神经网络框架,名为AdaI-PINNs,用于解决反问题,特别是在确定异质系统中不连续材料属性的反问题中表现出色,计算效率比现有方法高约40%。