今天给研究领域背景复杂、数据获取困难的论文er推荐一个创新思路:PINN+迁移学习。
这是因为:这种结合方法能够利用已有的知识和数据来加速新任务的学习过程,减少对大量标注数据的依赖。而且可以在保留迁移学习优势的基础上,进一步利用物理定律来优化模型的性能和泛化能力。
这就意味着PINN+迁移学习不仅能够提高模型的训练效率和性能表现,还能降低计算成本并促进创新,帮助我们增加论文的创新性和深度!
因此这个方向在各大CV任务、医疗诊断等多个应用场景都很受欢迎,且成果斐然,比如Nature子刊上基于DeepONe的迁移学习新框架...我从中挑选了一些高质量研究,方便感兴趣的同学学习参考。
全部论文+开源代码需要的同学看文末
Physics‑informed neural network with transfer learning (TL‑PINN) based on domain similarity measure for prediction of nuclear reactor transients
方法:论文提出了一种结合了迁移学习的物理信息神经网络,简称为TL-PINN。这种方法用于预测核反应堆的瞬态(Reactor Transients, RTs)状态。文章中提到,通过迁移学习,可以显著提高PINN模型训练的性能,减少模型训练所需的迭代次数。