性能暴涨97%!PINN+迁移学习联合思路发Nature,性价比也太高了!

今天给研究领域背景复杂、数据获取困难的论文er推荐一个创新思路:PINN+迁移学习

这是因为:这种结合方法能够利用已有的知识和数据来加速新任务的学习过程,减少对大量标注数据的依赖。而且可以在保留迁移学习优势的基础上,进一步利用物理定律来优化模型的性能和泛化能力。

这就意味着PINN+迁移学习不仅能够提高模型的训练效率和性能表现,还能降低计算成本并促进创新,帮助我们增加论文的创新性和深度!

因此这个方向在各大CV任务、医疗诊断等多个应用场景都很受欢迎,且成果斐然,比如Nature子刊上基于DeepONe的迁移学习新框架...我从中挑选了一些高质量研究,方便感兴趣的同学学习参考。

全部论文+开源代码需要的同学看文末

Physics‑informed neural network with transfer learning (TL‑PINN) based on domain similarity measure for prediction of nuclear reactor transients

方法:论文提出了一种结合了迁移学习的物理信息神经网络,简称为TL-PINN。这种方法用于预测核反应堆的瞬态(Reactor Transients, RTs)状态。文章中提到,通过迁移学习,可以显著提高PINN模型训练的性能,减少模型训练所需的迭代次数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值