PINN一直以来都是顶会顶刊上的大热方向,相关研究量多且质量高。最近,有关“贝叶斯+PINN”的研究取得了不少突破,多项成果被Neurips、Nature子刊等录用。
事实上,这个结合方向的研究热度正逐渐上升,因为其在提高泛化能力、避免过拟合、增强可解释性、提高计算效率、鲁棒性强以及灵活性高等多方面都展现出了显著优势。这些优势也让“贝叶斯+PINN”适用于多种任务,在金融、医疗诊断与预测等多个领域都有非常广泛的应用。
因此,这种学术界和工业界公认的热点拥有很高的研究价值,对于我们论文er来说,也是个还没卷生卷死,创新空间依然很大的方向,感兴趣的同学可以抓紧上车。
如果需要参考,我这边也提供8篇贝叶斯+PINN相关的代表论文,有新的也有比较经典的,开源代码也都整理上了,需要的速领。
论文原文+开源代码需要的同学看文末
Bayesian Physics-Informed Extreme Learning Machine for Forward and Inverse PDE Problems with Noisy Data
方法:本文提出了一种新的贝叶斯物理信息极限学习机(BPIELM),通过将物理定律作为成本函数引入极限学习机中,并结合贝叶斯方法来量化散乱噪声数据的不确定性,实验证明BPIELM在噪声场景下提供了更准确的预测和更低的计算成本,同时避免了过拟合问题。