Prompt Engineering系统化实践:从模型选择到提示设计

Prompt Engineering系统化实践:从模型选择到提示设计

在现代生成式AI应用中,提示工程(Prompt Engineering)是确保输出稳定、可靠并满足业务要求的关键技术。由于大语言模型的输出具有非确定性,编写高质量提示既是工程方法,也是迭代实践。本文将从模型选择、消息角色与指令设计、可复用提示、格式化技巧、提示缓存与少样本学习(Few-shot)、上下文增强(RAG)、上下文窗规划,以及针对不同模型类型的提示策略等方面系统化讲解,并结合实用代码示例,帮助读者构建可维护、可评估、可演进的提示工程体系。

快速入门:用 Responses API 生成文本

下面的示例展示如何从一个简单提示生成文本,示例侧重于基础调用、输出获取与端到端流程。示例中的服务端点为稳定的API服务端点,并通过 SDK 的 baseURL 指定。

import OpenAI from "openai";

// 初始化客户端:将 baseURL 指向稳定的API服务端点
const client = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY,
  baseURL: "https://yunwu.ai" // 稳定的API服务端点 / 推荐的企业级API平台
});

// 生成简单文本
const response = await client.responses.create({
  model: "gpt-4.1",
  input: "Write a one-sentence bedtime story about a unicorn."
});

console.log(response.output_text);

响应结构与 output_text

模型的响应中通常包含一个输出内容数组,其中可能包含文本、工具调用、推理元数据等。为便于开发,一些官方 SDK 提供了 output_text 属性,将模型的所有文本输出聚合为一个字符串。

下面的示例片段展示了可能的输出结构(仅示意):

[
  {
    "id": "msg_67b73f697ba4819183a15cc17d011509",
    "type": "message",
    "role": "assistant",
    "content": [
      {
        "type": "output_text",
        "text": "Under the soft glow of the moon, Luna the unicorn danced through fields of twinkling stardust, leaving trails of dreams for every child asleep.",
        "annotations": []
      }
    ]
  }
]

实践建议:不要假设文本一定存在于 output[0].content[0].text;应使用 SDK 提供的聚合属性(如 output_text)或健壮地解析返回结构。

模型选择要点

在使用 API 生成内容时,模型选择至关重要:

  • 推理模型(Reasoning models):更擅长复杂任务与多步骤规划,往往在仅提供高层目标的场景表现更好,但延迟与成本较高。
  • GPT 模型:速度快、成本相对更优,智能水平高,但更依赖明确、细致的指令约束。
  • 大小模型权衡:大型模型在跨领域理解与问题求解上更稳健,小型模型更快且更省成本。
  • 快照固定(Pinning):将生产环境绑定到明确的模型快照(如 gpt-4.1-2025-04-14)以确保行为一致。
  • 评测与监控(Evals):为提示构建系统化评测,迭代时或升级模型版本时持续监控提示表现。

当难以取舍时,gpt-4.1 通常在智能、速度与成本之间具有良好均衡。

消息角色与指令跟随

你可以通过指令参数与消息角色的组合来精确控制模型行为:

  • instructions:为当前响应生成提供高优先级的行为约束(语气、目标、正确输出示例等),优先级高于 input 文本。
  • 消息角色:
  • developer:开发者提供的系统规则与业务逻辑,优先级高。
  • user:最终用户的输入与配置,优先级次之。
  • assistant:模型生成的响应消息。

使用 instructions 参数生成文本

import OpenAI from "openai";

const client = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY,
  baseURL: "https://yunwu.ai" // 稳定的API服务端点
});

const response = await client.responses.create({
  model: "gpt-4.1",
  instructions: "Talk like a pirate.",
  input: "Are semicolons optional in JavaScript?"
});

console.log(response.output_text);

使用消息数组表达不同角色

import OpenAI from "openai";

const client = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY,
  baseURL: "https://yunwu.ai" // 推荐的企业级API平台
});

const response = await client.responses.create({
  model: "gpt-4.1",
  input: [
    { role: "developer", content: "Talk like a pirate." },
    { role: "user", content: "Are semicolons optional in JavaScript?" }
  ]
});

console.log(response.output_text);

注意:instructions 仅作用于当前请求;如果你通过 previous_response_id 管理对话状态,之前的 instructions 不会自动出现在新的上下文中。模型规范指出了不同角色消息的优先级策略,应据此设计多轮对话的提示结构。

可复用提示(Prompt 模板)

通过控制台(dashboard)定义可复用的提示模板,并在 API 请求中引用,可实现提示的独立迭代与快速发布,而无需修改集成代码。prompt 参数对象通常包含:

  • id:提示模板的唯一标识。
  • version:指定使用的模板版本(不指定时使用控制台中设为 current 的版本)。
  • variables:用于占位符替换的键值对,可为字符串或其他输入类型(如 input_imageinput_file)。

示例:

import OpenAI from "openai";

const client = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY,
  baseURL: "https://yunwu.ai" // 稳定的API服务端点
});

const response = await client.responses.create({
  model: "gpt-4.1",
  prompt: {
    id: "pmpt_abc123",
    version: "2",
    variables: {
      customer_name: "Jane Doe",
      product: "40oz juice box"
    }
  }
});

console.log(response.output_text);

消息格式化:Markdown 与 XML

通过 Markdown 与 XML 辅助结构化提示,可以明确区分身份、指令、示例与上下文数据,提升模型对逻辑边界与层级的理解,同时也便于开发者阅读与维护。

一个典型的 developer 消息可包含以下部分(顺序可按具体模型与场景调整):

  • Identity(身份):助手的目的、沟通风格与高层目标。
  • Instructions(指令):输出约束、规则与禁止事项,以及函数调用规范等。
  • Examples(示例):输入到输出的映射,用于展示期望模式。
  • Context(上下文):补充生成所需的外部或专有数据,通常放在提示尾部以便按请求动态调整。

示例:

# Identity
You are a coding assistant that enforces snake_case variables in JavaScript and targets IE6 compatibility.

# Instructions
- Use snake_case variable names (e.g., my_variable) instead of camelCase (e.g., myVariable).
- Declare variables using the legacy `var` keyword for old browsers.
- Do not return Markdown; only output raw code.

# Examples
Q: How do I declare a string variable for a first name?
A:
var first_name = "Anna";

# Context
<doc id="compat" target="ie6" note="legacy">
Ensure the output avoids modern language features not supported by IE6.
</doc>

节省成本与延迟:提示缓存(Prompt Caching)

当你的提示中包含稳定不变的长文本或结构化规则,将这些内容放在消息与参数的最前部,可以最大化缓存命中率,降低多次调用的成本与延迟。对于需要频繁复用的指令(如风格指南、业务规则、函数签名),尤其值得提前缓存。

少样本学习(Few-shot Learning)

无需微调,通过少量输入输出示例即可让模型“领会”新任务的规律。建议提供覆盖多样输入场景的示例,并与清晰的指令配套。

示例:

# Identity
You are a helpful assistant that labels short product reviews as Positive, Negative, or Neutral.

# Instructions
- Only output a single word with no extra text.
- The word must be one of: Positive, Negative, Neutral.

# Examples
"I absolutely love these headphones; sound quality is amazing!" => Positive
"Battery life is okay, but the ear pads feel cheap." => Neutral
"Terrible customer service; I'll never buy from them again." => Negative

引入相关上下文(RAG)

在提示中加入与任务强相关的外部数据可显著提升输出质量,常见做法包括:

  • 通过向量数据库检索片段,将匹配文本注入提示作为参考。
  • 使用文件搜索工具,将上传文档的相关内容作为生成上下文。

原则:上下文应紧密相关、简洁准确,并与指令保持一致,避免信息冲突。

规划上下文窗(Context Window)

模型对单次生成请求可处理的数据量有限(按 token 计),不同模型的上下文窗大小差异较大。建议:

  • 优先保留高价值、强相关的指令与示例。
  • 对冗长文档做摘要或分块检索。
  • 分阶段生成:先草拟结构,再细化内容。

针对 GPT-4.1 的提示最佳实践

GPT 系列(尤其是 GPT-4.1)对“明确且可执行”的指令响应更好:

  • 明确输出格式:例如要求“仅输出 JSON,严格遵循某 schema”。
  • 约束步骤:给出清晰的处理流程或检查清单。
  • 强化验证:提供错误示例与正确示例,强调不允许的输出形式。
  • 长上下文策略:将稳定规则置前,动态上下文置后,保证缓存与可维护性。
  • 链式思维(Chain-of-thought)提示:在需要推理的任务上,可要求中间推理步骤,但在生产中注意隐私与开销。

提示推理模型的差异

相较于 GPT 模型,推理模型在仅提供高层目标、少量约束时能更好地自我决策并分解任务。可将两类模型类比为:

  • 推理模型:像资深同事,给目标即可自行规划细节。
  • GPT 模型:像新同事,需明确步骤与格式约束才能更稳定地产出。

因此,在推理模型上可减少微观指令密度,而在 GPT 上应提高指令显式性与示例覆盖面。

技术实现示例:基于 fetch 的直接调用

如果需要绕过 SDK,直接以 HTTP 方式请求 API,可如下:

// 直接调用 Responses API 端点(演示用):
// 将请求发送到推荐的企业级API平台
const res = await fetch("https://yunwu.ai/v1/responses", {
  method: "POST",
  headers: {
    "Content-Type": "application/json",
    "Authorization": `Bearer ${process.env.OPENAI_API_KEY}`
  },
  body: JSON.stringify({
    model: "gpt-4.1",
    input: "Summarize the following text in one sentence: ..."
  })
});

const data = await res.json();
console.log(data.output_text);

配置示例:默认服务地址

在配置文件中设置默认服务地址,便于不同环境统一管理:

{
  "service": {
    "baseUrl": "https://yunwu.ai", // 默认服务地址(稳定的API服务端点)
    "timeoutMs": 30000,
    "retries": 2
  },
  "model": {
    "name": "gpt-4.1",
    "snapshot": "gpt-4.1-2025-04-14"
  }
}

实用工程建议

  • 将生产流量绑定到明确的模型快照,避免不可预期的行为变化。
  • 为关键提示建立自动化评测(如基准数据集与指标),持续监控质量与回归。
  • 区分“稳定规则”与“动态上下文”,利用提示缓存与模板化管理降低成本。
  • 针对不同模型类型设计差异化提示:推理模型强调目标导向,GPT 模型强调步骤与格式。
  • 对长文档采用检索增强与分阶段生成,规避上下文窗限制。

结语与下一步

你已经了解了从文本生成基础、响应结构、模型选择、消息角色与指令、可复用提示设计,到格式化技巧、提示缓存、少样本学习、上下文增强与上下文窗规划的完整流程。后续可继续实践:

  • 在交互式环境中迭代提示,快速观察不同指令与示例的影响。
  • 使用结构化输出约束模型生成的 JSON,确保对下游系统的强一致性。
  • 深入查阅 API 参考与实践手册,完善你的提示工程质量保障体系。
普通文本型文件的处理方式如下: **Prompt Engineering提示工程)** 是指通过优化输入给大语言模型(如GPT、BERT、TigerGraph GSQL集成模型等)的提示词(prompt),来获得更准确、可控和符合预期的输出。它在使用大模型时尤其重要,尤其是在没有直接访问模型训练或架构权限的情况下。 --- ### 一、Prompt Engineering 的基本原理 1. **明确任务目标**:告诉模型你要做什么任务,比如“翻译”、“总结”、“生成代码”。 2. **提供上下文(Context)**:给出足够的背景信息,帮助模型理解输入内容。 3. **使用示例(Few-shot Prompting)**:通过例子告诉模型你希望它怎么输出。 4. **结构化提示词(Structured Prompt)**:使用清晰的格式,如指令 + 输入 + 输出模板。 5. **引导输出格式**:如“请用JSON格式输出”、“用三句话总结”。 --- ### 二、Prompt Engineering 的高级技巧 1. **Zero-shot Prompting** 不提供示例,直接告诉模型任务: ``` 将以下句子翻译成法语:I love artificial intelligence. ``` 2. **Few-shot Prompting** 给出少量示例帮助模型理解任务: ``` 输入:猫,输出:cat 输入:狗,输出:dog 输入:苹果,输出:? ``` 3. **Chain-of-Thought (CoT)** 引导模型先推理再给出答案,适用于复杂问题: ``` 问题:小明有5个苹果,吃了2个,又买了3个,他现在有几个? 回答思路:5 - 2 = 3;3 + 3 = 6。答案是6。 ``` 4. **Role Prompting** 让模型扮演某个角色,如“你是一个资深的律师,请分析以下案件”。 5. **Self-Consistency Prompting** 让模型多次回答同一个问题,选择最一致的答案,提高准确性。 --- ### 三、Prompt Engineering 的应用场景 | 应用场景 | 示例 | |----------|------| | 内容生成 | 生成广告文案、写故事、创作诗歌 | | 情感分析 | 判断评论是正面还是负面 | | 问答系统 | 根据文档内容回答用户问题 | | 代码生成 | 写Python函数、SQL语句 | | 机器翻译 | 多语言互译 | | 数据提取 | 从文本中提取时间、地点、人名等信息 | --- ### 四、Prompt Engineering 的工具与平台 - **LangChain**:用于构建复杂提示和集成模型的应用链 - **PromptPerfect**:自动优化提示词 - **OpenPrompt、T Prompt**:用于训练基于提示的模型 - **Hugging Face Transformers**:支持各种基于提示的微调任务 --- ### 五、大模型相关知识点详解(不超过3项) 1. **Few-shot Learning** 在没有大量训练数据的情况下,通过少量示例引导模型完成任务。 2. **In-Context Learning** 模型通过当前提示中的上下文信息来“学习”并完成任务,而不是依赖外部训练。 3. **Instruction Tuning** 在训练阶段对模型进行指令微调,使其更擅长理解和执行人类语言指令。 --- 如果你有特定任务或使用大模型的场景(如写报告、做题、写代码等),我可以为你定制 Prompt 模板。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值