#导入pandas库,读取数据
import pandas as pd
data = pd.read_csv(r"/Users/jocelynzhong/Desktop/p训练营/python60-days-challenge-master/data.csv")
print(data)
#查看数据的类型
type(data)
print(type(data)) #data是<class 'pandas.core.frame.DataFrame'>
#查看数据类型
a=1
type(a)
print(type(a)) #a是<class 'int'>
#查看缺失值,结果是布尔值
data.isnull()
print(data.isnull()) #true是空值
#查看行数
data.head(5)
print(data.head(5))
#导入openpyxl库,读取excel文件
import openpyxl as op
data2 = pd.read_excel(r"/Users/jocelynzhong/Desktop/p训练营/python60-days-challenge-master/data.xlsx")
print(data2 )
#查看前5行
data.head(5)
print(data.head(5))
#数据信息的查看
#此时data是一个dataframe类型的对象,可以理解为dataframe类的实例。实例就具有类的属性和方法。
#1. 属性的调用格式为:实例名.属性名。
#2. 方法的调用格式为:实例名.方法名()。
#导入pandas库,读取数据
import pandas as pd
data = pd.read_csv(r"/Users/jocelynzhong/Desktop/p训练营/python60-days-challenge-master/data.csv")
print(data)
#查看数据的类型
type(data)
print(type(data))
# 列名、非空值、数据类型
data.info()
print(data.info())
# 将元组列表转换为 DataFrame
data_df = pd.DataFrame(data)
# 现在可以调用 shape 方法\
print(data_df.shape)
# 所有列名 data的属性
data.columns
print(data.columns)
# 数值列的基本统计量
data.describe()
print(data.describe())
# dtype是data type的缩写,用于描述数据类型。后续会频繁借助这个方法来查看某一列数据的属性
data.dtypes # 各列数据类型
print(data.dtypes)
# 查看某一列的数据类型
data["Annual Income"].dtype
print(data["Annual Income"].dtype)
#查看缺失值
data.isnull()
print(data.isnull())
#查看缺失值的数据类型
type(data.isnull())
print(type(data.isnull()))
#求缺失值总和
data.isnull().sum()
print(data.isnull().sum())
@浙大疏锦行