【深度学习——天气预测】

🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍦 参考文章:第R3周:天气预测(训练营内部可读)
🍖 作者:K同学啊

🍺我的环境:

  • 语言环境:Python3.7
  • 编译器:Spyder
  • 深度学习框架:TensorFlow 2.1.0
  • 数据地址:🔗百度网盘

一、导入数据

1、数据导入

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.callbacks import EarlyStopping


data = pd.read_csv(r"D:\桌面\深度学习数据\天气识别\weatherAUS.csv")
df = data.copy()
print(data.head())

实验结果图:
在这里插入图片描述

2、查看数据描述信息

print(data.describe())

数据描述信息

3、查看数据类型

print(data.dtypes)

数据类型

4、数据类型转换

data['Date'] = pd.to_datetime(data['Date'])
print(data['Date'])

数据类型转换

5、数据分组聚合

data['year'] = data['Date'].dt.year
data['Month'] = data['Date'].dt.month
data['day'] = data['Date'].dt.day
print(data.head())

数据分组聚合

6、删除列

data.drop('Date', axis = 1, inplace = True)
print(data.columns)

删除后的列

二、探索式数据分析

1、数据相关性探索

plt.figure(figsize = (15, 13))
#data.corr()表示了data中的两个变量之间的相关性
ax = sns.heatmap(data.corr(), square = True, annot = True, fmt = '.2f')
ax.set_xticklabels(ax.get_xticklabels(), rotation 
气候预测模型通常涉及到复杂的数学算法和大量的数据处理,Python作为一个流行的科学计算语言,提供了丰富的库来支持这类工作,如NumPy、Pandas、Matplotlib和Scikit-learn等。以下是一个简单的概念性的Python代码示例,用于说明如何使用这些库构建一个基础的气候预测模型(这里假设我们用线性回归作为简化模型): ```python # 导入必要的库 import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from matplotlib import pyplot as plt # 加载气候数据(假设数据在CSV文件中) climate_data = pd.read_csv('climate_data.csv') # 数据预处理:选取特征(如温度、湿度等)和目标变量(如降水量) X = climate_data[['temperature', 'humidity']] y = climate_data['precipitation'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建并训练线性回归模型 model = LinearRegression() model.fit(X_train, y_train) # 预测 y_pred = model.predict(X_test) # 可视化结果 plt.scatter(y_test, y_pred) plt.xlabel('实际降水量') plt.ylabel('预测降水量') plt.title('气候预测模型') plt.show() # 相关问题-- 1. 在实际气候预测中,还需要考虑哪些因素和更复杂的模型? 2. 如何评估这个简单模型在气候预测中的性能? 3. 如果需要使用深度学习方法,哪些Python库会更适合?(如TensorFlow或PyTorch) ``` 请注意,这只是一个非常基础的示例,实际气候预测模型会远比这复杂,可能需要使用到机器学习库如Climatology或专门的气候建模库,而且数据处理和特征工程会占据很大一部分工作。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值