深度学习——天气预测
🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍦 参考文章:第R3周:天气预测(训练营内部可读)
🍖 作者:K同学啊
🍺我的环境:
- 语言环境:Python3.7
- 编译器:Spyder
- 深度学习框架:TensorFlow 2.1.0
- 数据地址:🔗百度网盘
一、导入数据
1、数据导入
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.callbacks import EarlyStopping
data = pd.read_csv(r"D:\桌面\深度学习数据\天气识别\weatherAUS.csv")
df = data.copy()
print(data.head())
实验结果图:
2、查看数据描述信息
print(data.describe())
3、查看数据类型
print(data.dtypes)
4、数据类型转换
data['Date'] = pd.to_datetime(data['Date'])
print(data['Date'])
5、数据分组聚合
data['year'] = data['Date'].dt.year
data['Month'] = data['Date'].dt.month
data['day'] = data['Date'].dt.day
print(data.head())
6、删除列
data.drop('Date', axis = 1, inplace = True)
print(data.columns)
二、探索式数据分析
1、数据相关性探索
plt.figure(figsize = (15, 13))
#data.corr()表示了data中的两个变量之间的相关性
ax = sns.heatmap(data.corr(), square = True, annot = True, fmt = '.2f')
ax.set_xticklabels(ax.get_xticklabels(), rotation