传感器放置与模型降阶方法解析
在科学计算和工程应用中,传感器的合理放置以及复杂系统的模型降阶是两个至关重要的问题。传感器放置的合理性直接影响数据采集的准确性和效率,而模型降阶则能显著降低复杂系统的计算复杂度和时间成本。下面我们将详细探讨几种相关的算法和方法。
1. 间隙测量:最大方差法
在间隙POD测量中,确定传感器位置的方法经历了不断的发展。最初,随机选择传感器位置显然不是一个好的策略,后来通过选择位置来最小化条件数的方法取得了不错的效果,能快速提高准确性并降低最小二乘重建误差。然而,这种方法存在两个明显的缺点:一是算法实现成本高,需要对每个选定的传感器位置进行条件数的计算,且采用的是穷举搜索;二是在r - POD模式展开中,直到选择第r个传感器之前,算法都是病态的,理论上条件数是无穷大,在计算中约为$10^{17}$。
为了解决这些计算问题,Karniadakis及其同事提出了一种替代算法。该算法在迭代的第一步就为r - POD模式展开放置r个传感器,避免了矩阵病态的问题。具体来说,该算法选择POD模式的极值点作为传感器的初始位置,以最大程度地捕捉数据中的方差。其具体步骤如下:
1. 初始放置r个传感器。
2. 通过考虑每个POD模式$\psi_k$的最大值来确定这r个传感器的空间位置。
3. 在POD模式的下一个最大极值处添加额外的传感器。
对于仅进行r次测量的情况,该算法的性能并不强,但至少能产生稳定的条件数计算结果。为了提高性能,还可以考虑每个模式$\psi_k$的最小值,即同时考虑方差的最大值和最小值。
在实际应用中,该算法通常会从M个潜在极值中随机选择p个传感器,然后修改搜索位置以改善条件数。例如
超级会员免费看
订阅专栏 解锁全文
1231

被折叠的 条评论
为什么被折叠?



