神经网络入门

神经网络入门:读别人文章记录

通过一个简单分类任务来进行描述:
在这里插入图片描述
两层神经网络
在这里插入图片描述
上面可能会有点复杂,进行简单分析
去掉上面图一当中一些难懂的东西,简化变成下图:
在这里插入图片描述

  1. 输入层
    在这里插入图片描述
  2. 从输入层到隐藏层
    在这里插入图片描述
  3. 从隐藏层到输出层
    在这里插入图片描述
  4. 分析
    在这里插入图片描述
    激活层
    在这里插入图片描述
    三种常见的激活函数:
    1、阶跃函数:当输入小于等于0时,输出0;当输入大于0时,输出1。
    特点:阶跃函数输出值是跳变的,且只有二值,较少使用。
    2、Sigmoid:当输入趋近于正无穷/负无穷时,输出无限接近于1/0。
    特点:Sigmoid函数在当x的绝对值较大时,曲线的斜率变化很小(梯度消失),并且计算较复杂。
    3、ReLU:当输入小于0时,输出0;当输入大于0时,输出等于输入。
    特点:ReLU是当前较为常用的激活函数。

激活函数具体计算流程?
在这里插入图片描述
加上激活函数的神经网络的形式图:
在这里插入图片描述
在这里插入图片描述
输出的正规化
在这里插入图片描述
计算公式简单来说分为三步:

  • 以e为底对所有元素求指数幂
  • 将所有指数幂求和
  • 分别将这些指数幂与该和做商。
    使用这个计算公式做输出结果正规化处理的层叫做“Softmax”层。
    在这里插入图片描述
    衡量输出的好坏
    在这里插入图片描述
    在这里插入图片描述
    反向传播与参数优化
    在这里插入图片描述
    两个形象例子来说明参数优化的原理和过程:
    在这里插入图片描述
    在这里插入图片描述
    迭代
    在这里插入图片描述
    有几个重要观点
  • 像这种象限判断问题,完全可以用if,else语句来手工实现一个‘模型’解决。而用机器学习算法,跑数据集,来训练得到的‘模型’看似是饶了一个大圈解决了问题,实则,这正是机器学习的体现,因为你直接告诉计算机判断方法,和计算机自己去学来的,两种方法都能解决问题,但是后者将会更深刻,人何尝不是这样?当面临巨大的数据量的时候,机器学习的作用才能体现出来。
  • 上面图中矩阵画反了
  • 文章中为啥最大值是3,就可以判断是在第一象限呢:(3,1,0.1,0.5)可以理解为神经网络认为这个坐标在哪个象限的“可能性”,神经网络认为这个坐标位于第一象限的可能性为3、第二象限可能性为1、第三象限0.1、第四象限0.5,可能性越大,就越认为这个坐标位于对应的象限。
  • 数字可以理解为在该分类的概率
  • 每个隐藏层计算(矩阵线性运算)之后,都需要加一层激活层,要不然该层线性计算是没有意义的,为什么每个隐藏层都要加激活函数呢?比如说有2个隐藏层,第2个隐藏层与输出层直接相关,所以我觉得只要在第2个隐藏后加激活函数就可以了呀😓,第1个也要加吗?为什么?
    因为:第一个后不加的话,两个连续的线性变换可以等价成一个线性变换。
  • w是权重 b是偏重 隐藏层神经元数量自己选,w和b就类似斜率和截距
  • 本篇文章讲述的输入层是一个向量(一个样本数据),训练好一个样本能有什么用呢? 现实中训练的数据是有很多个的呀,多个样本是怎么一起训练的呀? :我jio的训练的目的是为了得到权重w和偏重b,后续调用模型只需要输入x就能得到分类了~
  • 隐藏层的层数,和每一层的神经元数量怎么选择?:一般没有很好的方法,都是在一定范围内遍历。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值