Stable Diffusion | 线稿转3D人物

本文介绍了如何使用SD(SampleDiffusion)和AI技术,如ControlNet和TiledDiffusion,将线稿转化为3D卡通人物,包括步骤、工具选择和AIGC技术在游戏和计算领域的前景展望。作者还提供了学习资源包链接和AIGC技术的学习路径建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何利用SD将人物线稿转3D?一起来学习吧!

PART01.

准备好一张线稿图

PART02.

进入文生图界面

模型:

revAnimated_v11.safetensors

Lora:

blindbox

提示词:

正向:

A cartoon character,3D rendering,C4D rendering,olender rendering,1boy,male focus,monochrome,simple background,single person,blue armor,blue hair,orange eyes,

一个卡通人物,3D渲染,C4D渲染,olender渲染,一个男孩,男性焦点,单色,简单背景,单人,蓝色盔甲,蓝色头发,橙色眼睛

(可以利用反推提示词快速得到基础的画面角色特征,在以想要的结果加以删减修改)

反向:

EasyNegative, paintings, sketches, ugly, 3d, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, manboobs, backlight,(ugly:1.3), (duplicate:1.3), (morbid:1.2), (mutilated:1.2), (tranny:1.3), mutated hands, (poor draw hands:1.3), blur, (bad anatomy:1.2), (bad proportions:1.3), extra limbs, (disfigured:1.3), (more than 2 nipples:1.3), (more than 1 navel:1.3), (missing: 1.3), (extra arms:1.3), (fused fingers:1.6), (too many fingers:1.6), (unclear eyes:1.3), bad hands, missing fingers, extra digit, (futa:1.1), bad body, double navel, mutad arms, hused arms, (puffy nipples, dark areolae, dark nipples, nipples), nipples no hong, no hong, fat rolls, obese, bad-picture-chill-75v,(without clothes), earphones, earmuffs,EasyNegative, paintings, sketches, ugly, 3d, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, manboobs, backlight,(ugly:1.3), (duplicate:1.3), (morbid:1.2), (mutilated:1.2), (tranny:1.3), mutated hands, (poorly drawn hands:1.3), blurry, (bad anatomy:1.2), (bad proportions:1.3), extra limbs, (disfigured:1.3), (more than 2 nipples:1.3), (more than 1 navel:1.3), (missing arms:1.3), (extra legs:1.3), (fused fingers:1.6), (too many fingers:1.6), (unclear eyes:1.3), bad hands, missing fingers, extra digit, (futa:1.1), bad body, double navel, mutad arms, hused arms, (puffy nipples, dark areolae, dark nipples, rei no himo, inverted nipples, long nipples), NG_DeepNegative_V1_75t, pubic hair, fat rolls, obese, bad-picture-chill-75v,(without clothes)

**采样方法:**Euler a

**迭代步数:**20

**CFG:**7

PART03.

打开ControlNet

启用Lineart,预处理选择invert

PART04.

点击生成并放大图片

选择一张满意的图片,进入图生图,使用相同的提示词,同样的采样器,同样的参数。

打开Tiled Diffusion重绘幅度调整为0.25,选择放大算法R-ESRGAN 4x+ Anime6B放大倍数调整为2倍。

(在高清放大的过程中,原图的一些细节会被改变,可用PS蒙版功能,保留原图合适的细节)

(放大前)

(放大后)

原本布料的材质细节被重绘平了,利用PS保留细节。

最终效果图如下:


文章使用的AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
<think>好的,我现在需要回答用户关于如何实现AI漫画推文画风人物统一的问题。首先,我得理解用户的需求。用户可能是在用AI工具生成漫画或推文时遇到了画风不一致或人物形象变化的问题,想要找到解决方法。 接下来,我应该考虑这个问题的各个方面。画风人物统一在传统漫画制作中通常由主笔团队协作控制,但使用AI生成时,因为模型的随机性,可能会出现不一致的情况。所以,我需要从多个角度分析,比如模型选择、参数设置、提示词设计、后期处理等。 首先,选择同一系列的模型是关键。不同模型有不同的训练数据风格,混用可能导致不一致。比如,用户如果用Stable Diffusion的不同版本,可能会得到不同结果。需要建议用户固定使用一个适合漫画风格的模型,比如专门训练过的动漫模型。 然后是角色设定模板。用户需要详细设定人物的外貌特征,如发型、颜色、服装等,并且这些设定需要在每次生成时作为提示词输入。可能需要建议用户建立详细的角色档案,甚至使用LoRA这样的微调方法来训练特定人物模型。 提示词优化也很重要。用户需要学习如何编写精确的提示词,包括画风的关键词,比如“日式漫画风格”、“赛璐璐上色”等,并且保持这些关键词的一致性。同时,负面提示词可以排除不想要的元素,比如“3D渲染”或“写实风格”。 种子固定也是一个技术点。大多数AI生成工具允许设置随机种子,固定种子可以在相同参数下生成风格一致的图像。用户可能需要指导如何找到并固定种子值。 分镜与构图方面,可能需要建议用户先规划好分镜,统一视角构图规则,比如使用相同的镜头角度或画面比例,这样即使生成多张图,也能保持视觉连贯性。 后期处理同样不可忽视。即使AI生成的图像有微小差异,通过后期调整色彩、线条或添加统一滤镜,可以增强整体一致性。可能需要推荐一些工具,比如Photoshop或GIMP,或者AI自带的后期功能。 此外,工作流程的优化也很重要。用户可能需要建立一套标准流程,从角色设定到生成、检查、调整,形成闭环,确保每一步都符合统一标准。 最后,用户可能需要了解目前的技术限制,AI生成的不可控因素仍然存在,完全一致可能需要多次迭代人工修正。所以,适当调整期望,结合人工审核调整是必要的。 现在需要把这些思路整理成结构清晰的回答,分点说明,使用用户易懂的语言,避免技术术语过多,同时确保每个步骤都有实际的操作建议。还要注意使用正确的中文表达,以及LaTeX格式的应用,不过这个问题可能涉及较少的数学公式,但如果有相关参数或技术术语,可能需要用行内公式标注,比如模型版本或参数设置中的数值示例。</think>要实现AI漫画推文的画风人物统一,需通过技术控制与流程优化解决AI生成中的随机性问题。以下是分步骤实现方法: --- ### 一、**选择统一生成模型** 1. **固定模型版本** - 使用同一系列模型(如Stable Diffusion的动漫特化版本`Anything V5`或`Waifu Diffusion`)。 - 避免混合不同模型,例如写实模型与卡通模型混用会导致风格撕裂。 2. **微调专用模型** - 通过LoRA或Dreambooth训练角色专属模型,例如: - 输入20-50张同一人物的多角度图片,生成个性化模型。 - 公式示例:微调后模型输出$G_{\text{new}}(x) = G_{\text{base}}(x) + \Delta W \cdot x$($\Delta W$为微调权重)。 --- ### 二、**精准控制生成参数** 1. **提示词(Prompt)设计** - **画风关键词**:固定风格描述,如`"日漫赛璐璐风格,粗线条,平涂色彩,背景虚化"`。 - **角色特征**:细化到发色`#FFA500`、瞳色`#00BFFF`、服饰细节(如`"红色蝴蝶结+白色水手服"`)。 - **负面提示词**:排除`"3D渲染,写实阴影,照片质感"`。 2. **固定随机种子(Seed)** - 生成满意图像后记录种子值(如`Seed=123456`),后续生成使用相同种子保证一致性。 --- ### 三、**构建角色模板库** 1. **三视图设定** - 预先生成角色的正面、侧面、背面图,作为后续生成的参考。 - 示例流程: ``` 输入:角色描述 + "正交视角,线稿,无背景" 输出:存入模板库供AI对齐使用 ``` 2. **表情与动作库** - 批量生成同一角色的多种表情(微笑/愤怒)动作(奔跑/坐姿),建立可调用素材库。 --- ### 四、**后期标准化处理** 1. **色彩校正** - 用PS/Lightroom对成稿执行: - 统一色相曲线(如RGB曲线拉高红色中间调) - 添加全局色彩滤镜(如`漫画网点效果.layer`) 2. **线条强化** - 使用`Waifu2x`放大并锐化线条,或通过ControlNet的`Lineart`预处理器提取统一线稿。 --- ### 五、**工作流优化** 1. **分镜预规划** - 先用AI生成缩略分镜(Thumbnail),确定构图后再细化,避免重复生成浪费资源。 2. **自动化脚本** - 编写批量生成脚本(如Auto1111的API调用),确保每张图应用相同参数: ```python api.generate(prompt="固定描述", seed=123456, steps=30, cfg_scale=7) ``` --- ### 六、**技术限制与应对** - **目前痛点**:AI对复杂动作(如手指交叉)易出错,需手动修正。 - **解决方案**:生成后使用`OpenPose`骨骼编辑器调整姿势,再局部重绘。 --- 通过上述方法,可实现约80%-90%的风格统一度,剩余差异需通过人工审核微调。随着模型控制技术进步(如Consistency Decoder),未来自动化程度将进一步提升。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值