Stable Diffusion各大模型相同参数出图效果对比

前言

相同提示词,相同参数:(a cute girl) with brown hair, half body.A masterpiece, best quality,<lora:blindbox_v_mic0.8>;

采样方法:DPM++ 2M SED Karras

采样迭代步数:25

宽:768  高:512  生成批次:1  每批数量:2

CFG Scale: 6.5   随机种子:-1

注意:部分图像有变形,请谨慎观看!!!

1、3Guofeng3_v32Light.safetensors

 

 

2、AbyssOrangeMix2_sfw.safetensors

 

 

3、anything-v4.5.ckpt

 

 

4、AnythingV5_v5PrtRE.safetensors

 

 

5、ChilloutMix-ni-fp16.safetensors

 

 

6、chilloutmix_NiPrunedFp32Fix.safetensors

 

 

7、counterfeitV2525d_counterfeitV2525d.ckpt

 

 

8、deliberate_v11.ckpt

 

 

9、deliberate_v2.safetensors

 

 

10、dreamlike-photoreal-2.0.safetensors

 

 

11、dreamlikeDiffusion10_10.ckpt

 

 

12、dreamshaper_631BakedVae.safetensors

 

 

14、GhostMix-V2.0-fp16-BakedVAE.safetensors

 

 

15、Inkpunk-Diffusion-v2.ckpt

 

 

16、lofi_V21.safetensors

 

 

17、meinaunreal_v3.safetensors

 

 

18、neverendingDreamNED_bakedVae.safetensors

 

 

19、openjourney-v2-unpruned.ckpt

 

 

20、perfectWorld_v2Baked.safetensors

 

 

21、protogenX53Photorealism_10.safetensors

 

 

22、realisticVisionV20_v20.safetensors

 

 

23、revAnimated_v11.safetensors

 

 

24、revAnimated_v122.safetensors

 

 

25、v1-5-pruned-emaonly.ckpt

 

 

26、vae-ft-mse-840000-ema-pruned.ckpt

 

 

27、wd-v1-3-full.ckpt

 

好了,以上就是常用大模型相同参数的测试效果,个人娱乐没有针对性,仅供参考! 

### Stable Diffusion 中的采样方法详解 #### 一、采样的概念 在 Stable Diffusion 中,每个步骤都会生成一张新的采样后的像。整个去噪过程即是采样,在这一过程中所采用的技术被称为采样器或采样方法[^2]。 #### 二、主要采样方法介绍 ##### (一)DDIM (去噪扩散隐式模型) 作为最早期专为扩散模型设计的采样器之一,DDIM 提供了一种有效的方式来进行高质量片合成。该算法通过控制噪声逐步减少来实现像生成的目标。其特点在于能够提供更加平滑的结果过渡,并允许用户自定义生成路径中的某些参数设置[^3]。 ```python from diffusers import DDIMPipeline pipeline = DDIMPipeline.from_pretrained('model_name') image = pipeline(prompt="a photograph of an astronaut riding a horse").images[0] ``` ##### (二)PLMS (伪线性多步法) 这是基于 DDIM 进一步优化而来的版本,旨在提高计算效率的同时保持甚至提升最终输的质量。相较于前者而言,它能够在更短时间内完成相同质量级别的渲染工作,因此成为许多应用场景下的首选方案。 ```python from diffusers import PNDMPipeline pipeline = PNDMPipeline.from_pretrained('model_name') image = pipeline(prompt="a photograph of an astronaut riding a horse", num_inference_steps=50).images[0] ``` 除了上述两种经典的方法之外,还有其他多种新型高效的采样技术不断涌现并被集成到最新的框架版本当中,比如 Euler A, Heun's method 等等,它们各自具有独特的优势适用于不同类型的任务需求。 #### 三、如何选择适合自己的采样方式? 当面对众多可选方案时,可以根据具体项目的要求和个人偏好做决定: - 如果追求极致画质而不考虑速度因素,则可以选择较为保守但稳定的选项如 DDIM; - 对于实时交互类应用来说,优先考虑那些能在较短时间里给满意成果的选择像 PLMS 或者更新颖快速收敛型别的采样策略; 总之,在实际操作前最好先尝试几种不同类型的配置组合进行对比测试,从而找到最适合自己场景的最佳实践模式。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值