【FLUX教程】更强的Flux风格还原!Flow Edit

最近两周出了一个类似的工作Flow Edit,和RF-Inversion是同插件,已经集成好了,之前下过的需要更新一下,建议github手动下载,放到插件文件夹:

同样是一个可以根据提示词进行局部修改、进行风格参考变换画面内容的算法,和RF-Inversion相比各有优点。

没有对两个方法进行很严谨的对比实验,仅从大家的实验和我的实验中总结些经验。

从局部修改来看,Flow Edit似乎不如RF-Inversion理想,他会更改整个图像的画面,对于画面中有很特别的元素来说,效果无法达到预期。

比如给把带假发的猫换成狗,RF-Inversion稍微规范下提示词就可以还原的大差不差:

但是Flow Edit比较难固定假发,尝试了挺多,只能做到这样:

虽然Flow Edit画面变换较多,但在风格变化方面算是优势。

贴几个UP主阿米粒包子的图说明下:

https://www.bilibili.com/video/BV1oEC3YrEAU

整个画面的光影得到了很好的保留,而主体能够被完全改变,包括服装配饰,目前flux的IPA是做不到的,RF-Inversion的风格参考当时也实验过,优点难用。

所以这个的最大优点是,不需要提示词描述太多细节,整体的构图和色调依然能够保持统一,当然描述得越细节越还原。

阿米粒也提到最近在做一些商单需要套图,而这个就非常适合做套图(整体风格一样但是主体不需要保持一致性,比如下图)


感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

今天我也是拿了一些图进行了实验。

首先盲猜下,直接用固定图+我的人物lora+Flow Edit,简单提示词的情况下,画面变动会略多些,实验下来果然是。

下面对比下,RF-Inversion:

Flow Edit:

可以看到RF的变动比较少。

试用下来,如果想还原,提示词还是需要好好写下的。

比如,我也试了下阿米粒这个例图+我的lora,侧面还是有点像的:

如果不改提示词,直接上:

如果改了提示词,并根据效果逐渐完善:

可以看到虽然地上的物品很难还原,但是翅膀可以大致还原。另外,人物的动作不需要特殊描述,也能够基本还原。

看来openpose难以控制的、提示词难以描述的,可以尝试下这个方法。

其次,底模型和具体风格lora的助攻也很重要。

下面举一个油画感图像的例子。

如果没有好好写提示词,用的是一个关于新春服装的提示词,会出现这样的结果,可以看到能够改衣服,但是不能大幅度更改风格。

如果正常写比较还原的提示词:

上面动作什么的都能基本还原,但是画质下降了,因为我用的是基础的flux fp16+人脸lora,油画感不能还原。

然后我直接去下了个油画感的lora:

看是否有改善,果然,更加还原了,小眼神也到位了:

不过并不是谁都有人脸lora,后面可以尝试下加pulid去做人脸一致性。

啥,为啥不直接换脸?当然是省去了脸部蒙版、原图融合的问题呀。

今天尝试到这,很不错的算法,工作流建议看下阿米粒的视频详情。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值