换脸自由!ComfyUI 零基础教程实现超自然 AI 换脸,免费领资料

对于许多男生来说,为女友或妻子挑选拍照服装往往是个令人头疼的难题。一个不小心就可能踩雷,原本的好意反而适得其反。但别担心,今天要介绍的ComfyUI将成为你解决这一困扰的绝佳帮手!

想象一下,你和女朋友或者老婆一起挑选艺术照的服装,用ComfyUI,你们可以先预览各种风格的搭配,看看哪一款最能衬托她的气质。这不仅能让你提前给出最真实、最贴心的意见或建议,还能避免现场尴尬,让你们的拍照体验更加愉快。

这不仅仅是一个换脸的小玩意儿,它其实是一种新的生活方式。它告诉我们,每个人都有权利去尝试不同的风格,去探索自己的美。ComfyUI就像是一个魔法,让你在镜头前,成为最自信、最闪亮的自己。

让我们一起看看,ComfyUI是如何做到的。

话不多说,我们先来看看效果: (需要的小伙伴可以文末自行扫描获取)

生成效果

在这里插入图片描述

在这里插入图片描述

使用

在开始之前,我们要先有ComfyUI (需要的小伙伴可以文末自行扫描获取)

准备工作

关于安装插件,我们直接在启动器中搜索安装即可。简洁方便还省事,安装完成后记得重启。

一、comfyui-reactor-node 插件

在这里插入图片描述

二、ComfyUI_InstantID 插件

注意,这里需要切换到2024-04-28 的版本

在这里插入图片描述

三、ComfyUI_IPAdapter_plus 插件

在这里插入图片描述

四、comfyui-mixlab-nodes 插件

在这里插入图片描述

五、ComfyUI_Comfyroll_CustomNodes 插件

在这里插入图片描述

光有插件还不行,还需要模型,模型我已经给大家准备好了,只需要把

models 下的文件都放在你的 \ComfyUI-aki-v1.3\models

值得注意的是,InstantID
插件它在启动的时候会自己需要一个模型,这个模型没法手动下载,手动下载了它也会删掉自动下载。所以这里我们必须要配置代理(代理这个东西我不敢推荐,因为经常有跑路的,所以自行查找):

在这里插入图片描述

步骤说明

首先,我们启动 ComfyUI ,并将我提供的工作流face_swap_V2.json拖拽进来,就会看到以下的界面:

在这里插入图片描述

如果出现报错,有可能缺失了所需的插件,可以通过ComfyUI的管理器来安装缺失节点。

在这里插入图片描述

以下是我个人在运行过程中遇到的报错问题:

1、Prompt outputs failed validation

ReActorFaceSwap:

- Value not in list: face_restore_model: ‘GFPGANv1.4.pth’ not in [‘none’,
‘codeformer-v0.1.0.pth’, ‘gfpgan_1.3.onnx’, ‘gfpgan_1.4.onnx’, ‘GPEN-
BFR-512.onnx’]

解决办法:重新安装comfyui-reactor-node插件

2、D:\a\_work\1\s\onnxruntime\python\onnxruntime_pybind_state.cc:891
onnxruntime::python::CreateExecutionProviderInstance CUDA_PATH is set but CUDA
wasnt able to be loaded.

解决办法:安装 CUDA Toolkit 11.8
下载地址:https://developer.nvidia.com/cuda-11-8-0-download-archive

可打开命令提示符或 PowerShell,输入下方命令,查询当前CUDA版本

nvcc --version


  * 1

接下来,说说整体的一个思路:

  1. 两张图片输入

  2. Reactor初次换脸

  3. InstantID换脸再次换脸

  4. ipadpter做风格统一

  5. 遮罩目标图片输出

输入的两张图片,注意脸部朝向最好一致:

在这里插入图片描述

最终生成效果如下:
在这里插入图片描述

(图片由AI生成,请谨慎甄别)

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 改善FaceFusion AI绘图照片效果的方法 #### 提高数据质量 为了获得更好的效果,输入图像的质量至关重要。高质量的数据集能够显著提升模型的表现。确保用于训练的人图片具有足够的分辨率和多样的角度、光照条件[^1]。 #### 增加样本多样性 当只有少量的照片作为源时,可以尝试通过增加不同姿态、表情以及环境光下的额外样本来扩充数据库。这有助于覆盖更多可能的情况并减少过拟合的风险,从而使得生成的结果更加自然真实。 #### 后期处理优化 即使是最先进的算法也可能留下一些瑕疵,比如轻微的噪点或其他不完美之处。因此,在完成初步合成之后应用适当的滤镜或编辑工具来清理这些细节是非常必要的。GFPGAN等插件可以帮助修复面部特征中的缺陷,使最终产物看起来更平滑细腻[^2]。 #### 调整超参数 对于基于神经网络的技术而言,合理配置各项参数同样重要。例如,在使用`inswapper_128.onnx`执行人的过程中,可以根据具体需求微调其内部设定;而在利用`gfpgan_1.4.onnx`做增强处理前也可以探索不同的选项组合以找到最适合当前项目的那一组值。 #### 使用预训练模型 采用已经经过大规模公开数据集充分训练过的权重文件(如YoloV8系列),可以在很大程度上加快开发进度的同时保证良好的泛化能力。此外,针对特定应用场景还可以考虑进一步fine-tune现有模型以便更好地适应实际业务逻辑的要求[^3]。 ```csharp // C#代码片段展示如何加载ONNX模型进行推理操作 using Microsoft.ML.OnnxRuntime; using System; public class FaceProcessor { private InferenceSession session; public void LoadModel(string modelPath){ this.session = new InferenceSession(modelPath); } // 更多功能... } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值