【closerAI ComfyUI】太棒了!超高速修图解决方案!IC-Edit+nunchaku应该是目前图像编辑领域最优解!冲

添加图片注释,不超过 140 字(可选)

更多AI前沿科技资讯,请关注我们:

closerAI-一个深入探索前沿人工智能与AIGC领域的资讯平台

【closerAI ComfyUI】太棒了!超高速修图解决方案!IC-Edit+nunchaku应该是目前图像编辑领域最优解!冲!

大家好,我是Jimmy。随着生成式AI的快速发展,基于自然语言指令的图像编辑技术成为数字创作领域的核心需求。然而,现有方法在精度与效率之间始终存在难以调和的矛盾:

  • 传统微调方法依赖海量数据和算力,训练成本高昂;

  • 零样本编辑技术(如Prompt-to-Prompt)则受限于指令理解能力和编辑质量。

浙江大学与哈佛大学联合团队针对这一痛点,提出ICEdit(In-Context Edit)框架,通过融合大规模扩散变换器(Diffusion Transformer, DiT)的生成潜力与上下文感知机制,实现了轻量化、高精度、强泛化的图像编辑解决方案。

ICEdit:基于大规模扩散变换器的上下文图像编辑框架

——开启高效精准的AI图像编辑新时代

添加图片注释,不超过 140 字(可选)

论文地址:https://river-zhang.github.io/ICEdit-gh-pages/

项目仓库:https://github.com/River-Zhang/ICEdit?tab=readme-ov-file

模型下载地址:https://huggingface.co/sanaka87/ICEdit-MoE-LoRA

ICEdit的核心创新

1. 上下文驱动的零样本编辑范式

ICEdit摒弃传统模型微调模式,直接利用扩散变换器(DiT)的上下文感知能力完成编辑任务:

  • 输入形式:用户仅需提供原始图像与自然语言指令(如“将背景改为夜晚”),模型通过双联图像对(源图+目标图)的上下文提示生成编辑结果。

  • 技术优势:无需修改网络结构,避免重复训练,显著降低计算开销。

2. LoRA-MoE混合调优策略

为实现高效参数适配,ICEdit采用低秩适配器(LoRAÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

closerAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值