常用三角函数总结

诱导公式

整周期

sin ⁡ ( 2 k π + α ) = sin ⁡ α ( k ∈ Z ) cos ⁡ ( 2 k π + α ) = cos ⁡ α ( k ∈ Z ) tan ⁡ ( 2 k π + α ) = tan ⁡ α ( k ∈ Z ) cot ⁡ ( 2 k π + α ) = cot ⁡ α ( k ∈ Z ) sec ⁡ ( 2 k π + α ) = sec ⁡ α ( k ∈ Z ) csc ⁡ ( 2 k π + α ) = csc ⁡ α ( k ∈ Z ) \begin{array}{l} \sin (2 k \pi+\alpha)=\sin \alpha(k \in Z) \\\\ \cos (2 k \pi+\alpha)=\cos \alpha(k \in Z) \\\\ \tan (2 k \pi+\alpha)=\tan \alpha(k \in Z) \\\\ \cot (2 k \pi+\alpha)=\cot \alpha(k \in Z) \\\\ \sec (2 k \pi+\alpha)=\sec \alpha(k \in Z) \\\\ \csc (2 k \pi+\alpha)=\csc \alpha(k \in Z) \end{array} sin(2+α)=sinα(kZ)cos(2+α)=cosα(kZ)tan(2+α)=tanα(kZ)cot(2+α)=cotα(kZ)sec(2+α)=secα(kZ)csc(2+α)=cscα(kZ)

半周期

sin ⁡ ( π + α ) = − sin ⁡ α cos ⁡ ( π + α ) = − cos ⁡ α tan ⁡ ( π + α ) = tan ⁡ α cot ⁡ ( π + α ) = cot ⁡ α sec ⁡ ( π + α ) = − sec ⁡ α csc ⁡ ( π + α ) = − csc ⁡ α \begin{array}{l} \sin (\pi+\alpha)=-\sin \alpha \\\\ \cos (\pi+\alpha)=-\cos \alpha\\\\ \tan (\pi+\alpha)=\tan \alpha\\\\ \cot (\pi+\alpha)=\cot \alpha\\\\ \sec (\pi+\alpha)=-\sec \alpha\\\\ \csc (\pi+\alpha)=-\csc \alpha \\\\ \end{array} sin(π+α)=sinαcos(π+α)=cosαtan(π+α)=tanαcot(π+α)=cotαsec(π+α)=secαcsc(π+α)=cscα

四分之一周期

sin ⁡ ( π / 2 + α ) = cos ⁡ α cos ⁡ ( π / 2 + α ) = − sin ⁡ α tan ⁡ ( π / 2 + α ) = − cot ⁡ α cot ⁡ ( π / 2 + α ) = − tan ⁡ α sec ⁡ ( π / 2 + α ) = − csc ⁡ α csc ⁡ ( π / 2 + α ) = sec ⁡ α \begin{array}{l} \sin (\pi / 2+\alpha)=\cos \alpha \\\\ \cos (\pi / 2+\alpha)=-\sin \alpha \\\\ \tan (\pi / 2+\alpha)=-\cot \alpha\\\\ \cot (\pi / 2+\alpha)=-\tan \alpha\\\\ \sec (\pi / 2+\alpha)=-\csc \alpha\\\\ \csc (\pi / 2+\alpha)=\sec \alpha \\\\ \end{array} sin(π/2+α)=cosαcos(π/2+α)=sinαtan(π/2+α)=cotαcot(π/2+α)=tanαsec(π/2+α)=cscαcsc(π/2+α)=secα

恒等变形

平方关系

sin ⁡ 2 α + cos ⁡ 2 α = 1 tan ⁡ 2 α + 1 = sec ⁡ 2 α cot ⁡ 2 α + 1 = csc ⁡ 2 α \begin{array}{l} \sin ^{2} \alpha+\cos ^{2} \alpha=1 \\\\ \tan ^{2} \alpha+1=\sec ^{2} \alpha \\\\ \cot ^{2} \alpha+1=\csc ^{2} \alpha \end{array} sin2α+cos2α=1tan2α+1=sec2αcot2α+1=csc2α

积的关系

sin ⁡ α = tan ⁡ α × cos ⁡ α cos ⁡ α = cot ⁡ α × sin ⁡ α tan ⁡ α = sin ⁡ α × sec ⁡ α cot ⁡ α = cos ⁡ α × csc ⁡ α sec ⁡ α = tan ⁡ α × csc ⁡ α csc ⁡ α = sec ⁡ α × cot ⁡ α \begin{array}{l} \sin \alpha=\tan \alpha \times \cos \alpha \\\\ \cos \alpha=\cot \alpha \times \sin \alpha \\\\ \tan \alpha=\sin \alpha \times \sec \alpha \\\\ \cot \alpha=\cos \alpha \times \csc \alpha \\\\ \sec \alpha=\tan \alpha \times \csc \alpha \\\\ \csc \alpha=\sec \alpha \times \cot \alpha \end{array} sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα

三角函数展开

cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β tan ⁡ ( α + β ) = tan ⁡ α + tan ⁡ β 1 − tan ⁡ α tan ⁡ β tan ⁡ ( α − β ) = tan ⁡ α − tan ⁡ β 1 + tan ⁡ α tan ⁡ β \begin{array}{c} \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\\\ \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\\\ \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\\\ \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\\\ \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\\\ \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \end{array} cos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβtan(α+β)=1tanαtanβtanα+tanβtan(αβ)=1+tanαtanβtanαtanβ

辅助角公式

a sin ⁡ α + b cos ⁡ α = a 2 + b 2 sin ⁡ ( α + φ ) sin ⁡ φ = b a 2 + b 2 cos ⁡ φ = a a 2 + b 2 \begin{aligned} a \sin \alpha+b \cos \alpha &=\sqrt{a^{2}+b^{2}} \sin (\alpha+\varphi) \\\\ \sin \varphi &=\frac{b}{\sqrt{a^{2}+b^{2}}} \\\\ \cos \varphi &=\frac{a}{\sqrt{a^{2}+b^{2}}} \end{aligned} asinα+bcosαsinφcosφ=a2+b2 sin(α+φ)=a2+b2 b=a2+b2 a

倍角公式

sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α = 2 tan ⁡ α + cot ⁡ α cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α {\begin{array}{c} \sin 2 \alpha=2 \sin \alpha \cos \alpha=\frac{2}{\tan \alpha+\cot \alpha} \\\\ \cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha \\\\ \tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha} \end{array}} sin2α=2sinαcosα=tanα+cotα2cos2α=cos2αsin2α=2cos2α1=12sin2αtan2α=1tan2α2tanα

半角公式

sin ⁡ α 2 = ± 1 − cos ⁡ α 2 cos ⁡ α 2 = ± 1 + cos ⁡ α 2 tan ⁡ α 2 = ± 1 − cos ⁡ α 1 + cos ⁡ α = sin ⁡ α 1 + cos ⁡ α = 1 − cos ⁡ α sin ⁡ α \begin{array}{c} \sin \frac{\alpha}{2}=\pm \sqrt{\frac{1-\cos \alpha}{2}} \\\\ \cos \frac{\alpha}{2}=\pm \sqrt{\frac{1+\cos \alpha}{2}} \\\\ \tan \frac{\alpha}{2}=\pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}=\frac{\sin \alpha}{1+\cos \alpha}=\frac{1-\cos \alpha}{\sin \alpha} \end{array} sin2α=±21cosα cos2α=±21+cosα tan2α=±1+cosα1cosα =1+cosαsinα=sinα1cosα

降幂公式

sin ⁡ 2 α = 1 − cos ⁡ 2 α 2 =  versin  2 α 2 cos ⁡ 2 α = 1 + cos ⁡ 2 α 2 =  vercos  2 α 2 tan ⁡ 2 α = 1 − cos ⁡ 2 α 1 + cos ⁡ 2 α \begin{array}{c} \sin ^{2} \alpha=\frac{1-\cos 2 \alpha}{2}=\frac{\text { versin } 2 \alpha}{2} \\\\ \cos ^{2} \alpha=\frac{1+\cos 2 \alpha}{2}=\frac{\text { vercos } 2 \alpha}{2} \\\\ \tan ^{2} \alpha=\frac{1-\cos 2 \alpha}{1+\cos 2 \alpha} \end{array} sin2α=21cos2α=2 versin 2αcos2α=21+cos2α=2 vercos 2αtan2α=1+cos2α1cos2α

万能公式

sin ⁡ α = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \begin{array}{l} \sin \alpha=\frac{2 \tan \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \\\\ \cos \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \\\\ \tan \alpha=\frac{2 \tan \frac{\alpha}{2}}{1-\tan ^{2} \frac{\alpha}{2}} \end{array} sinα=1+tan22α2tan2αcosα=1+tan22α1tan22αtanα=1tan22α2tan2α

积化和差

sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \begin{array}{l} \sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\\\ \cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)] \\\\ \cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)] \\\\ \sin \alpha \sin \beta=-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)] \end{array} sinαcosβ=21[sin(α+β)+sin(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]cosαcosβ=21[cos(α+β)+cos(αβ)]sinαsinβ=21[cos(α+β)cos(αβ)]

和差化积

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \begin{array}{c} \sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\\\ \sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\\\ \cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\\\ \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \end{array} sinα+sinβ=2sin2α+βcos2αβsinαsinβ=2cos2α+βsin2αβcosα+cosβ=2cos2α+βcos2αβcosαcosβ=2sin2α+βsin2αβ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值