诱导公式
整周期
sin ( 2 k π + α ) = sin α ( k ∈ Z ) cos ( 2 k π + α ) = cos α ( k ∈ Z ) tan ( 2 k π + α ) = tan α ( k ∈ Z ) cot ( 2 k π + α ) = cot α ( k ∈ Z ) sec ( 2 k π + α ) = sec α ( k ∈ Z ) csc ( 2 k π + α ) = csc α ( k ∈ Z ) \begin{array}{l} \sin (2 k \pi+\alpha)=\sin \alpha(k \in Z) \\\\ \cos (2 k \pi+\alpha)=\cos \alpha(k \in Z) \\\\ \tan (2 k \pi+\alpha)=\tan \alpha(k \in Z) \\\\ \cot (2 k \pi+\alpha)=\cot \alpha(k \in Z) \\\\ \sec (2 k \pi+\alpha)=\sec \alpha(k \in Z) \\\\ \csc (2 k \pi+\alpha)=\csc \alpha(k \in Z) \end{array} sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)sec(2kπ+α)=secα(k∈Z)csc(2kπ+α)=cscα(k∈Z)
半周期
sin ( π + α ) = − sin α cos ( π + α ) = − cos α tan ( π + α ) = tan α cot ( π + α ) = cot α sec ( π + α ) = − sec α csc ( π + α ) = − csc α \begin{array}{l} \sin (\pi+\alpha)=-\sin \alpha \\\\ \cos (\pi+\alpha)=-\cos \alpha\\\\ \tan (\pi+\alpha)=\tan \alpha\\\\ \cot (\pi+\alpha)=\cot \alpha\\\\ \sec (\pi+\alpha)=-\sec \alpha\\\\ \csc (\pi+\alpha)=-\csc \alpha \\\\ \end{array} sin(π+α)=−sinαcos(π+α)=−cosαtan(π+α)=tanαcot(π+α)=cotαsec(π+α)=−secαcsc(π+α)=−cscα
四分之一周期
sin ( π / 2 + α ) = cos α cos ( π / 2 + α ) = − sin α tan ( π / 2 + α ) = − cot α cot ( π / 2 + α ) = − tan α sec ( π / 2 + α ) = − csc α csc ( π / 2 + α ) = sec α \begin{array}{l} \sin (\pi / 2+\alpha)=\cos \alpha \\\\ \cos (\pi / 2+\alpha)=-\sin \alpha \\\\ \tan (\pi / 2+\alpha)=-\cot \alpha\\\\ \cot (\pi / 2+\alpha)=-\tan \alpha\\\\ \sec (\pi / 2+\alpha)=-\csc \alpha\\\\ \csc (\pi / 2+\alpha)=\sec \alpha \\\\ \end{array} sin(π/2+α)=cosαcos(π/2+α)=−sinαtan(π/2+α)=−cotαcot(π/2+α)=−tanαsec(π/2+α)=−cscαcsc(π/2+α)=secα
恒等变形
平方关系
sin 2 α + cos 2 α = 1 tan 2 α + 1 = sec 2 α cot 2 α + 1 = csc 2 α \begin{array}{l} \sin ^{2} \alpha+\cos ^{2} \alpha=1 \\\\ \tan ^{2} \alpha+1=\sec ^{2} \alpha \\\\ \cot ^{2} \alpha+1=\csc ^{2} \alpha \end{array} sin2α+cos2α=1tan2α+1=sec2αcot2α+1=csc2α
积的关系
sin α = tan α × cos α cos α = cot α × sin α tan α = sin α × sec α cot α = cos α × csc α sec α = tan α × csc α csc α = sec α × cot α \begin{array}{l} \sin \alpha=\tan \alpha \times \cos \alpha \\\\ \cos \alpha=\cot \alpha \times \sin \alpha \\\\ \tan \alpha=\sin \alpha \times \sec \alpha \\\\ \cot \alpha=\cos \alpha \times \csc \alpha \\\\ \sec \alpha=\tan \alpha \times \csc \alpha \\\\ \csc \alpha=\sec \alpha \times \cot \alpha \end{array} sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα
三角函数展开
cos ( α + β ) = cos α cos β − sin α sin β cos ( α − β ) = cos α cos β + sin α sin β sin ( α + β ) = sin α cos β + cos α sin β sin ( α − β ) = sin α cos β − cos α sin β tan ( α + β ) = tan α + tan β 1 − tan α tan β tan ( α − β ) = tan α − tan β 1 + tan α tan β \begin{array}{c} \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\\\ \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\\\ \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\\\ \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\\\ \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\\\ \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \end{array} cos(α+β)=cosαcosβ−sinαsinβcos(α−β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α−β)=sinαcosβ−cosαsinβtan(α+β)=1−tanαtanβtanα+tanβtan(α−β)=1+tanαtanβtanα−tanβ
辅助角公式
a sin α + b cos α = a 2 + b 2 sin ( α + φ ) sin φ = b a 2 + b 2 cos φ = a a 2 + b 2 \begin{aligned} a \sin \alpha+b \cos \alpha &=\sqrt{a^{2}+b^{2}} \sin (\alpha+\varphi) \\\\ \sin \varphi &=\frac{b}{\sqrt{a^{2}+b^{2}}} \\\\ \cos \varphi &=\frac{a}{\sqrt{a^{2}+b^{2}}} \end{aligned} asinα+bcosαsinφcosφ=a2+b2sin(α+φ)=a2+b2b=a2+b2a
倍角公式
sin 2 α = 2 sin α cos α = 2 tan α + cot α cos 2 α = cos 2 α − sin 2 α = 2 cos 2 α − 1 = 1 − 2 sin 2 α tan 2 α = 2 tan α 1 − tan 2 α {\begin{array}{c} \sin 2 \alpha=2 \sin \alpha \cos \alpha=\frac{2}{\tan \alpha+\cot \alpha} \\\\ \cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha \\\\ \tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha} \end{array}} sin2α=2sinαcosα=tanα+cotα2cos2α=cos2α−sin2α=2cos2α−1=1−2sin2αtan2α=1−tan2α2tanα
半角公式
sin α 2 = ± 1 − cos α 2 cos α 2 = ± 1 + cos α 2 tan α 2 = ± 1 − cos α 1 + cos α = sin α 1 + cos α = 1 − cos α sin α \begin{array}{c} \sin \frac{\alpha}{2}=\pm \sqrt{\frac{1-\cos \alpha}{2}} \\\\ \cos \frac{\alpha}{2}=\pm \sqrt{\frac{1+\cos \alpha}{2}} \\\\ \tan \frac{\alpha}{2}=\pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}=\frac{\sin \alpha}{1+\cos \alpha}=\frac{1-\cos \alpha}{\sin \alpha} \end{array} sin2α=±21−cosαcos2α=±21+cosαtan2α=±1+cosα1−cosα=1+cosαsinα=sinα1−cosα
降幂公式
sin 2 α = 1 − cos 2 α 2 = versin 2 α 2 cos 2 α = 1 + cos 2 α 2 = vercos 2 α 2 tan 2 α = 1 − cos 2 α 1 + cos 2 α \begin{array}{c} \sin ^{2} \alpha=\frac{1-\cos 2 \alpha}{2}=\frac{\text { versin } 2 \alpha}{2} \\\\ \cos ^{2} \alpha=\frac{1+\cos 2 \alpha}{2}=\frac{\text { vercos } 2 \alpha}{2} \\\\ \tan ^{2} \alpha=\frac{1-\cos 2 \alpha}{1+\cos 2 \alpha} \end{array} sin2α=21−cos2α=2 versin 2αcos2α=21+cos2α=2 vercos 2αtan2α=1+cos2α1−cos2α
万能公式
sin α = 2 tan α 2 1 + tan 2 α 2 cos α = 1 − tan 2 α 2 1 + tan 2 α 2 tan α = 2 tan α 2 1 − tan 2 α 2 \begin{array}{l} \sin \alpha=\frac{2 \tan \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \\\\ \cos \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \\\\ \tan \alpha=\frac{2 \tan \frac{\alpha}{2}}{1-\tan ^{2} \frac{\alpha}{2}} \end{array} sinα=1+tan22α2tan2αcosα=1+tan22α1−tan22αtanα=1−tan22α2tan2α
积化和差
sin α cos β = 1 2 [ sin ( α + β ) + sin ( α − β ) ] cos α sin β = 1 2 [ sin ( α + β ) − sin ( α − β ) ] cos α cos β = 1 2 [ cos ( α + β ) + cos ( α − β ) ] sin α sin β = − 1 2 [ cos ( α + β ) − cos ( α − β ) ] \begin{array}{l} \sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\\\ \cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)] \\\\ \cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)] \\\\ \sin \alpha \sin \beta=-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)] \end{array} sinαcosβ=21[sin(α+β)+sin(α−β)]cosαsinβ=21[sin(α+β)−sin(α−β)]cosαcosβ=21[cos(α+β)+cos(α−β)]sinαsinβ=−21[cos(α+β)−cos(α−β)]
和差化积
sin α + sin β = 2 sin α + β 2 cos α − β 2 sin α − sin β = 2 cos α + β 2 sin α − β 2 cos α + cos β = 2 cos α + β 2 cos α − β 2 cos α − cos β = − 2 sin α + β 2 sin α − β 2 \begin{array}{c} \sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\\\ \sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\\\ \cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\\\ \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \end{array} sinα+sinβ=2sin2α+βcos2α−βsinα−sinβ=2cos2α+βsin2α−βcosα+cosβ=2cos2α+βcos2α−βcosα−cosβ=−2sin2α+βsin2α−β