Check the difficulty of problems
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 4081 | Accepted: 1807 |
Description
Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input
The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.
Output
For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.
Sample Input
2 2 2 0.9 0.9 1 0.9 0 0 0
Sample Output
0.972
Source
POJ Monthly,鲁小石
概率dp题目。
用dp[i][j][k] 表示teami 在 [0, j]这j+1道题目中,AC了k道题目的概率。
则状态转移方程为:
dp[i][j][k] = dp[i][j-1][k] * (1-p(j)) + dp[i][j-1][k-1] * p(j)
需要注意j == 0的特殊情况。
那么 所有队伍 都至少解了一道题目的概率就是 p1 = multi(1-dp[i][m-1][0])
再减去所有队伍都解出1~n-1题目的概率 p2
就是最终的答案。
遇到一个非常奇怪的现象:
在gcc编译器下, 当输出printf采用%.3lf时,wrong answer,修改为%.3f时,AC
提交记录:
1.Wrong Answer 注意独立事件同时发生的概率,一定是要用乘法,而不是加法。p1的计算一定是(1-dp[i][m-1][0])的乘积,而不是dp[i][m-1][0]的求和!!!。
2.Wrong Answer 因为%.3lf输出会wa。
3.AC。
概率dp题目。
用dp[i][j][k] 表示teami 在 [0, j]这j+1道题目中,AC了k道题目的概率。
则状态转移方程为:
dp[i][j][k] = dp[i][j-1][k] * (1-p(j)) + dp[i][j-1][k-1] * p(j)
需要注意j == 0的特殊情况。
那么 所有队伍 都至少解了一道题目的概率就是 p1 = multi(1-dp[i][m-1][0])
再减去所有队伍都解出1~n-1题目的概率 p2
就是最终的答案。
遇到一个非常奇怪的现象:
在gcc编译器下, 当输出printf采用%.3lf时,wrong answer,修改为%.3f时,AC
提交记录:
1.Wrong Answer 注意独立事件同时发生的概率,一定是要用乘法,而不是加法。p1的计算一定是(1-dp[i][m-1][0])的乘积,而不是dp[i][m-1][0]的求和!!!。
2.Wrong Answer 因为%.3lf输出会wa。
3.AC。
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define oo 0x3f3f3f3f #define MAX_N 30010 #define MAX_M 510 using namespace std; double prob[1010][40]; double dp[1010][40][40]; int main() { int n, m, t; while (EOF != scanf("%d%d%d", &m, &t, &n)) { if (m == t && t == n && n == 0) break; int i, j, k; memset(dp, 0, sizeof(dp)); for (i = 0; i < t; i++) { for (j = 0; j < m; j++) { scanf("%lf", &prob[i][j]); } } for (i = 0; i < t; i++) { for (j = 0; j < m; j++) { if (j == 0) { dp[i][j][0] = 1 - prob[i][j]; dp[i][j][1] = prob[i][j]; continue; } dp[i][j][0] = dp[i][j-1][0] * (1 - prob[i][j]); for (k = 1; k <= n; k++) { dp[i][j][k] = dp[i][j-1][k] * (1 - prob[i][j]) + dp[i][j-1][k-1] * prob[i][j]; if (dp[i][j][k] == 0) break; } } } double p1 = 1; for (i = 0; i < t; i++) { p1 *= (1-dp[i][m - 1][0]); } double p2 = 1; for (i = 0; i < t; i++) { double p3 = 0; for (j = 1; j < n; j++) { p3 += dp[i][m - 1][j]; } p2 *= p3; } printf("%.3lf\n", p1 - p2); } return 0; }