基于英特尔® Extension for Scikit-learn 实现宠物分类喂食系统

本文介绍了一个基于Intel® Extension for Scikit-learn的宠物分类喂食系统,通过支持向量机(SVM)和优化的XGBoost模型,识别宠物图片以控制投喂器投放相应食物。
摘要由CSDN通过智能技术生成


前言

本次黑客松,我计划实现一个基于Extension for Scikit-learn的宠物分类喂食系统。当系统识别出宠物属性时,通过系统预制的参数,控制投喂器投放猫粮或者狗粮。该方案主要使用Intel® Scikit-learn。

Intel® Scikit-learn 是 Scikit-learn 库的一个优化版本,它利用了 Intel® Math Kernel Library(Intel® MKL)的优化功能,可以提供更好的性能和并行计算能力。Scikit-learn 是一个用于机器学习的 Python 库,它提供了许多常用的机器学习算法和工具,例如分类器、聚类算法、特征提取等。通过使用 Intel Scikit-learn,开发人员可以更快地训练和部署机器学习模型,从而更好地满足实际应用需求

一、数据集

1.引入库

首先需要准备一个包含猫和狗图片的数据集,并将其分为训练集和测试集。可以使用一些公开的数据集,例如Caltech-256和ImageNet等。

2.加载数据集

使用Scikit-learn的load_files方法加载数据集,该方法会将数据集加载为一个目录,其中包含许多子目录,每个子目录都包含一张猫或狗的图片。

from sklearn.datasets import load_files  
  
dataset = load_files('path/to/dataset')  
X, y = dataset.data, dataset.target

3.划分训练集和测试集<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值