基于英特尔® Extension for Scikit-learn 实现二元分类
前言
本次黑客松,我计划实现一个基于Extension for Scikit-learn的宠物分类喂食系统。当系统识别出宠物属性时,通过系统预制的参数,控制投喂器投放猫粮或者狗粮。该方案主要使用Intel® Scikit-learn。
Intel® Scikit-learn 是 Scikit-learn 库的一个优化版本,它利用了 Intel® Math Kernel Library(Intel® MKL)的优化功能,可以提供更好的性能和并行计算能力。Scikit-learn 是一个用于机器学习的 Python 库,它提供了许多常用的机器学习算法和工具,例如分类器、聚类算法、特征提取等。通过使用 Intel Scikit-learn,开发人员可以更快地训练和部署机器学习模型,从而更好地满足实际应用需求
一、数据集
1.引入库
首先需要准备一个包含猫和狗图片的数据集,并将其分为训练集和测试集。可以使用一些公开的数据集,例如Caltech-256和ImageNet等。
2.加载数据集
使用Scikit-learn的load_files方法加载数据集,该方法会将数据集加载为一个目录,其中包含许多子目录,每个子目录都包含一张猫或狗的图片。
from sklearn.datasets import load_files
dataset = load_files('path/to/dataset')
X, y = dataset.data, dataset.target