人工智能基础学习:拉格朗日乘子法实现非线性规划

本文介绍了拉格朗日乘子法的基本原理及其在解决非线性规划问题中的应用。通过引入拉格朗日乘子,将有等式约束的优化问题转化为无约束问题,进而求得极值点。文中还给出了一个具体的Python代码示例,展示如何使用拉格朗日乘子法解决等式约束的非线性规划问题,并提及了KKT条件在验证解的有效性中的作用。
摘要由CSDN通过智能技术生成

拉格朗日乘子法原理介绍

对于二元函数,设目标函数为f( x 1 , x 2 x_1,x_2 x1,x2),极值存在的必要条件为:
等式约束为: g ( x 1 , x 2 ) = 0 g(x_1,x_2)=0 g(x1,x2)=0
在无约束时, ∂ f ∗ ∂ x 1 = ∂ f ∗ ∂ x 1 = 0 , 即 d f = ( ∂ f ∗ ∂ x 1 ) d x 1 + ( ∂ f ∗ ∂ x 2 ) d x 2 = 0 \frac{\partial f^*}{\partial x_1}=\frac{\partial f^*}{\partial x_1}=0,即df=(\frac{\partial f^*}{\partial x_1})dx_1+(\frac{\partial f^*}{\partial x_2})dx_2=0 x1f=x1f=0df=(x1f)dx1+(x2f)dx2=0
在有等式约束时,除了以上关系式还要满足:
d g = ( ∂ g ∗ ∂ x 1 ) d x 1 + ( ∂ g ∗ ∂ x 2 ) d x 2 = 0 dg=(\frac{\partial g^*}{\partial x_1})dx_1+(\frac{\partial g^*}{\partial x_2})dx_2=0 dg=(x1g)dx1+(x2g)dx2=0
由以上两个式子可以得出
d x 2 d x 1 = − ( ∂ f ∗ / ∂ x 1 ∂ f ∗ / ∂ x 2 ) d x 2 d x 1 = − ( ∂ g ∗ / ∂ x 1 ∂ g ∗ / ∂ x 2 ) \frac {dx_2}{dx_1}=-(\frac{\partial f^*/\partial x_1}{\partial f^*/\partial x_2}) \frac {dx_2}{dx_1}=-(\frac{\partial g^*/\partial x_1}{\partial g^*/\partial x_2}) dx1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值