最优化课程笔记07——约束问题的非线性规划方法(重点:拉格朗日乘子法和惩罚函数法)

本文深入探讨了优化问题中拉格朗日乘子法的应用,详细讲解了等式约束和不等式约束问题的处理方法,并介绍了内惩罚函数法作为补充手段。适合对数学优化有兴趣的学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7.1 间接法:约束转化为无约束问题(含一个重点:拉格朗日乘子法

当维数多的时候不适用

7.1.2拉格朗日乘子法(重点)

7.1.2.1 等式约束问题

7.1.2.2 不等式约束问题

 

7.1.3 惩罚函数法(内惩罚函数法)

7.2 直接法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有情怀的机械男

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值